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Motivation

• Two pictures to describe quantum theory:
• Schrödinger picture: modify “state”.
• Heisenberg picture: modify “observable”.
• Often said to be “dual” to each other.

• Is the Heisenberg-Schrödinger duality also a duality in the sense of Classical Linear
Logic (CLL)?



Introduction Banach Spaces Hilbert Spaces Heisenberg-Schrödinger Duality HS duality, Operator Spaces and LL

Scientific Approach

• Need a rigorous mathematical description of the Heisenberg-Schrödinger duality.
• This can be achieved by combining results from:

• Functional analysis, e.g. Hilbert spaces, Banach spaces – fundamental for quantum
theory in general;

• Operator algebras, e.g. von Neumann algebras, C*-algebras – fundamental for the
Heisenberg picture (in infinite dimensions);

• Noncommutative geometry, e.g. Operator Spaces – important for both pictures
(in infinite dimensions).

• Afterwards, we perform a categorical analysis and organise the relevant
mathematical structure into models of ILL/CLL.
• Describe facets of the duality in terms of Polarised Linear Logic:

• Schrödinger picture ⇒ positive logical polarity;
• Heisenberg picture ⇒ negative logical polarity;
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Banach Spaces

Definition
A Banach space is a complex vector space X equipped with a norm ∥−∥ : X → [0,∞)
(i.e. a normed space) which is complete with respect to the topology induced by the
norm. More specifically, this means that every Cauchy sequence (xn)n∈N

1 in X has a
topological limit, i.e. there exists x ∈ X , such that limn→∞ ∥xn − x∥ = 0.

Example

• Mn(C), the n × n complex matrices with operator norm.

• Every finite-dimensional normed space.

1∀ϵ > 0.∃N ∈ N.∀i , j > N.∥xi − xj∥ < ϵ
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Bounded Operators

Definition
Let X and Y be Banach spaces and let f : X → Y be a linear map (aka operator). We
say that f is:

• bounded iff there exists r > 0 such that ∥f (x)∥ ≤ r∥x∥ for all x ∈ X ;

• continuous iff f is continuous w.r.t the norm topologies of X and Y ;

• a contraction iff ∥f (x)∥ ≤ ∥x∥ for all x ∈ X ;

• an isometry iff ∥f (x)∥ = ∥x∥ for all x ∈ X .

Definition
We write Ban for the category of Banach spaces with contractions as morphisms and
FdBan for the full subcategory consisting of finite-dimensional Banach spaces.
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Banach Spaces of Operators

• The space B(X ,Y )
def
= {f : X → Y | f bounded} is a Banach space w.r.t the

operator norm given by

∥f ∥ def
= sup{∥f (x)∥ : x ∈ X and ∥x∥ ≤ 1}

• We write B(X )
def
= B(X ,X ) for the Banach space of bounded operators on X .

• Example: B(Cn) ∼= Mn(C), where Cn is equipped with the ℓ2-norm.
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Banach Space Duals

• We write X ∗ def
= B(X ,C) for the Banach space dual of X .

• Fact: For any Banach space X , we have X ↪→ X ∗∗ isometrically.

• Fact: If X finite-dimensional, then X ∼= X ∗∗ isometrically.

• If f : X → Y is bounded, the dual map f ∗ : Y ∗ → X ∗ is called the Banach space
adjoint.
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Banach Space Tensor Products

• Let X and Y be Banach spaces and consider the algebraic tensor product X ⊗ Y
(i.e. as vector spaces). Not a Banach space, in general.

• Tensor X ⊗α Y is a completion of X ⊗ Y w.r.t a suitable norm α.

• Then X ⊗ Y ⊆ X ⊗α Y is a dense subset.
• Notable tensor products:

• Injective tensor product X ⊗ϵ Y , where ϵ is the smallest reasonable norm.
• Projective tensor product X ⊗π Y , where π is the largest reasonable norm.

• If X and Y are finite-dimensional Banach spaces, then:
• X ⊗ Y = X ⊗α Y as vector spaces.
• (X ⊗ϵ Y )∗ ∼= X ∗ ⊗π Y ∗ isometrically.
• (X ⊗π Y )∗ ∼= X ∗ ⊗ϵ Y

∗ isometrically.
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Finite-dimensional Banach Spaces: Categorically and Logically

The category FdBan of finite-dimensional Banach spaces and linear contractions:

• is ∗-autonomous and has finite products and coproducts;
• therefore also a model of MALL (multiplicative additive linear logic):

• multiplicative conjunction X ⊗ Y
def
= X ⊗π Y ;

• multiplicative disjunction X

&

Y
def
= X ⊗ϵ Y ;

• linear negation X⊥ def
= X ∗;

• additive conjunction X&Y
def
= X ⊕∞ Y ;

• additive disjunction X ⊕ Y
def
= X ⊕1 Y ;
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Categorical and Logical Structure of Banach Spaces

The category Ban of Banach spaces and linear contractions:

1. has a symmetric monoidal closed structure:

1.1 Monoidal product X ⊗π Y .
1.2 Internal hom B(X ,Y ).

2. is complete (products ⇐⇒ ℓ∞-direct sums).

3. is cocomplete (coproducts ⇐⇒ ℓ1-direct sums).

4. is locally ℵ1-presentable.
5. forms a model of ILL. In fact, two exponentials:

5.1 The one induced by the adjunction Set Ban

⊣ℓ
1

Ball

5.2 The Lafont exponential (induced by 1, 4 and SAFT).

Remark: Nothing new here, this was already known or easy to deduce!
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Banach Spaces Enough?

• Banach spaces (functional analysis) are fundamental for our understanding of
infinite-dimensional quantum theory.

• However, they are not sufficient. We also need noncommutative geometry and
operator algebras.
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Hilbert Spaces

Definition
A Hilbert space H is a complex inner-product space such that H is a Banach space

w.r.t the ℓ2-norm ∥h∥ def
=

√
⟨h, h⟩.

Example

The Hilbert space Cn with ⟨x , y⟩ def=
∑n

i=1 xiyi .

Example

For any set S , the space

ℓ2(S)
def
=

{
f : S → C |

∑
s∈S
|f (s)|2 <∞

}

with inner product ⟨f |g⟩ def=
∑

s∈S f (s)g(s). Every Hilbert space H is unitarily
isomorphic to ℓ2(S) for a set S with card(S) = dim(H).
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Pure State vs Mixed State Quantum Computation

• In pure state quantum computation:
• A pure state |ψ⟩ is a normalised vector in a Hilbert space H.
• Emphasis on unitary dynamics, i.e. operations described by unitary operators

U : H1 → H2.

• In mixed state quantum computation: emphasis on observational behaviour.
Hilbert spaces not enough!
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Operators on Hilbert Spaces

• The Hilbert space tensor product H
2

⊗ K gives a symmetric monoidal structure.
• No monoidal closed structure for infinite-dimensional Hilbert spaces.

• B(H1,H2) is a Banach space (functional analysis).
• B(H1,H2) is also an operator space (noncommutative geometry).

• B(H)
def
= B(H,H) is a von Neumann algebra (operator algebra).
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Are Hilbert spaces enough?

• Problem: Quantum measurement – not a morphism between Hilbert spaces.

• Quantum measurement ⇒ mixed-state computation ⇒ noncommutative
geometry and operator algebras.
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Mixed-state computation and the Heisenberg-Schrödinger Duality

• Quantum operations (also known as channels) can be modeled in two pictures:
• Heisenberg picture – as NCPU (normal completely-positive unital maps)
φ : B(H2)→ B(H1).

• Schrödinger picture – as CPTP (completely-positive trace-preserving maps)
ψ : T (H1)→ T (H2).

• We have B(H) ∼= T (H)∗ as Banach spaces and φ = ψ∗ (modulo isomorphism).
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Trace Class Operators

• The trace class T (H) ⊆ B(H) is a two-sided ideal for which we have a meaningful
notion of trace.

• T (H) is a Banach space w.r.t trace norm and T (H)∗ ∼= B(H), i.e. T (H) is the
predual of B(H).

• We have a bounded operator tr : T (H)→ C :: f 7→
∑

λ⟨eλ, feλ⟩, where {eλ}λ∈Λ
can be any ONB of H.

• Intuition: Recall that in PLL, for a positive formula P we have P ⊸!P and so we
have canonical counit and comultiplication maps.

• For T (H), obvious candidate for counit, namely the trace.
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Quantum Operations in the Schrödinger Picture

• An element t ∈ T (H) is positive if ⟨h, th⟩ ≥ 0, for all h ∈ H.
• A bounded map φ : T (H1)→ T (H2) is:

• positive, if φ preserves positive elements;

• completely positive, if (intuitively) φ⊗ id : T (H1

2

⊗Cn)→ T (H2

2

⊗Cn) is positive for
every n ∈ N. Full details omitted.

• trace-preserving, if tr(φ(t)) = tr(t).

• A quantum operation (aka quantum channel) from H1 to H2 is a CPTP map
φ : T (H1)→ T (H2).

• A state of H in the Schrödinger picture is a density operator: ρ ∈ T (H) such that
tr(ρ) = 1 and 0 ≤ ρ.
• Equivalently, states may be identified with the (C)PTP maps φ : C→ T (H).

• Example:
∑∞

n=1 2
−n |n⟩ ⟨n| is a density operator on ℓ2(N).



Introduction Banach Spaces Hilbert Spaces Heisenberg-Schrödinger Duality HS duality, Operator Spaces and LL

Normal Maps

• A linear map φ : B(H1)→ B(H2) is called normal if there exists a (necessarily
unique) bounded operator φ∗ : T (H2)→ T (H1) such that

B(H1) B(H2)

T (H1)
∗ T (H2)

∗

φ

(φ∗)
∗

∼= ∼=

• Remark: Equivalent definition - continuity w.r.t ultraweak topology.

• Remark: B(H)∗ ∼= T (H) and one can see (−)∗ as a contravariant functor.
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Quantum Operations in the Heisenberg Picture

• A linear map φ : B(H1)→ B(H2) is called unital if φ(IH1) = IH2 .

• A quantum operation (aka quantum channel) from H1 to H2 in the Heisenberg
picture is a normal completely positive unital (NCPU) map φ : B(H1)→ B(H2).

• A “state” of H in the Heisenberg picture is given by a N(C)PU map
φ : B(H)→ C.
• Every such “state” is necessarily of the form φ = tr(ρ−) for a uniquely
determined density operator ρ ∈ T (H).

• Remark: the word “state”, as used here, is standard in the mathematics
literature on operator algebras.
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Duality between the Heisenberg and Schrödinger Pictures

• In what sense are the two pictures dual to each other?

• There is a bijective correspondence

CPTP(T (H1),T (H2)) ∼= NCPU(B(H2),B(H1))

φ 7→ φ∗ (modulo isometric isomorphism)

φ∗ ←[ φ (modulo isometric isomorphism)

• If H1 and H2 - finite-dimensional, this is just linear-algebraic transposition.

• General case: transposition in the sense of dual pairings between topological vector
spaces. The dual pairing is given by tr : T (H)× B(H)→ C :: (t, a) 7→ tr(ta).

• This family of bijections determines a contravariant isomorphism of categories
CPTP ∼= NCPUop where objects are taken to be Hilbert spaces.
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Heisenberg-Schrödinger duality = LL duality?

• T (H) and B(H) – not Hilbert spaces in general.
• T (H) and B(H) – Banach spaces, but multiple problems with LL models:

• Linear-algebraic transposition (−)T : Mn(C)→ Mn(C) is a positive isometric
isomorphism, but not completely positive for n ≥ 2. How to get rid of it?

• How to model multiplicative conjunction/disjunction?

T (H)⊗?1 T (K ) ∼= T (H
2

⊗ K ) (composition in Schrödinger picture)

B(H)⊗?2 B(K ) ∼= B(H
2

⊗ K ) (composition in Heisenberg picture)

• Solution: noncommutative geometry. Right kinds of tensors and transposition
is not completely contractive, not completely isometric, not completely positive.
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Operator Spaces = Noncommutative Banach Spaces

• The noncommutative (i.e. quantum) analogue of Banach spaces are called
Operator Spaces.

• Part of the program of noncommutative geometry.

• B(H) and T (H) are operator spaces.

• Every von Neumann algebra, C*-algebra (from operator algebra theory, used for
the Heisenberg picture) is also an operator space.

• (−)T : Mn → Mn is not a morphism for n ≥ 2.

• Right kinds of tensor products:

T (H) ⊗̂ T (K ) ∼= T (H
2

⊗ K ) (completely projective tensor)

B(H)⊗ B(K ) ∼= B(H
2

⊗ K ) (spatial tensor of von Neumann algebras)
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What is an Operator Space?

Definition
An (abstract) operator space is a vector space X together with a family of norms

{∥·∥n : Mn(X )→ [0,∞) | n ∈ N},

such that:

(B) The pair (M1(X ), ∥·∥1) is a Banach space;

(M1) ∥x ⊕ y∥m+n = max{∥x∥m, ∥y∥n}
(M2) ∥αxβ∥m ≤ ∥α∥∥x∥m∥β∥
for each n,m ∈ N, x ∈Mm(X ), y ∈Mn(X ), α, β ∈ Mm.
We write Mn(X ) for the Banach space, in fact operator space, (Mn(X ), ∥·∥n).
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What are the morphisms of operator spaces?

Definition
Let u : X → Y be a linear map between operator spaces X and Y . We write
un : Mn(X )→ Mn(Y ) for the linear map [xij ] 7→ [u(xij)]. We say that u is:

• completely bounded, if ∥u∥cb
def
= supn∈N ∥un∥ <∞.

• a complete contraction, if un is a contraction for each n ∈ N.
• a complete isometry, if un is an isometry for each n ∈ N.
• a completely isometric isomorphism, if u is a surjective complete isometry.

Remark: The map un, known as the n-th amplification of u, can be thought of as the
map idMn ⊗ u. This can be made precise, via a natural isomorphism, via the completely
injective tensor product, which enjoys the property

Mn(X ) ∼= Mn

inj

⊗ X
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Categories of Operator Spaces

• OS – the category of operator spaces with complete contractions as morphisms.

• OS is the noncommutative (or quantum) analogue of Ban.
• Noncommutative analogues for Banach space constructions:

• CB(X ,Y ) – the operator space of completely bounded maps. Internal hom.
• X ⊗̂ Y – the completely projective tensor product. Monoidal product.

• X
inj

⊗ Y – the completely injective tensor product. Another monoidal product.

• X ∗ def
= CB(X ,C) – operator space dual. Compatible with Banach space dual.

• ℓ1-direct sums and ℓ∞-direct sums. (Co)products. Compatible with Banach space
counterparts.
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Finite-dimensional Operator Spaces: Categorically and Logically

The category FdOS of finite-dimensional operator spaces and complete contractions:

• is ∗-autonomous and has finite products and coproducts;
• therefore also a model of MALL:

• multiplicative conjunction X ⊗̂ Y .

• multiplicative disjunction X
inj

⊗ Y .

• linear negation X⊥ def
= X ∗.

• additive conjunction X&Y
def
= X ⊕∞ Y .

• additive disjunction X ⊕ Y
def
= X ⊕1 Y .

• In addition to Ban, we also get the right tensors:
• T (H1) ⊗̂ T (H2) ∼= T (H1 ⊗ H2) (composition in Schrödinger picture).

• B(H1)
inj

⊗ B(H2) ∼= B(H1 ⊗ H2) (composition in Heisenberg picture).

• Note: ⊗ =
inj

⊗ for finite-dimensional von Neumann algebras, like above.

• Part of internship project of Thea Li.
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Categorical and Logical Structure of Operator Spaces

The category OS of operator spaces and complete contractions:

1. has a symmetric monoidal closed structure:

1.1 Monoidal product X ⊗̂ Y . Moreover, T (H1) ⊗̂ T (H2) ∼= T (H1

2

⊗ H2).
1.2 Internal hom CB(X ,Y ).

2. is complete (products ⇐⇒ ℓ∞-direct sums).

3. is cocomplete (coproducts ⇐⇒ ℓ1-direct sums).

4. is locally ℵ1-presentable. (Most important result in our paper)

5. forms a model of ILL. In fact, two exponentials:

5.1 The one induced by the adjunction Set OS

⊣ℓ
1

Ball

5.2 The Lafont exponential (induced by 1, 4 and SAFT).

Remark: Principle categorical difference with Ban: the strong generators in 4.
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Mixed-State Computation

• Let φ : B(H1)→ B(H2) be a linear unital map. Then, φ is completely-positive iff
φ is a complete contraction.2

• Let φ : T (H1)→ T (H2) be a linear trace-preserving map. Then, φ is
completely-positive iff φ is a complete contraction.

• Therefore CPTP and NCPU maps are complete contractions and in OS.

2Also holds for von Neumann algebras and operator systems.
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CLL and Heisenberg-Schrödinger Duality
• OS is not ∗-autonomous.

• However, Q
def
= Chu(OS,C) is (co)complete, ∗-autonomous, has a Lafont

exponential and it is a model of CLL. Follows using results of Barr.

• Objects are triples (X ,Y , d), where d : X ⊗̂ Y → C is a complete contraction.

• a morphism is a pair (f , g) : (X1,Y1, d1)→ (X2,Y2, d2) such that

X1 ⊗̂ Y2 X1 ⊗̂ Y1

X2 ⊗̂ Y2 C

X1 ⊗̂ g

d2

f ⊗̂ Y2 d1

If Xi = T (Hi ),Yi = B(Hi ), and di = tr, the diagram commutes iff f = g t , i.e. f
is the transpose w.r.t dual pairing of the Heisenberg-Schrödinger duality.
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Multiplicatives in Q and the Heisenberg-Schrödinger Duality

Theorem
The monoidal product

(T (H1),B(H1), tr)⊗ (T (H2),B(H2), tr)

in Q is the object
(T (H1) ⊗̂ T (H2),B(H1)⊗ B(H2), tr

′).

Remark: We can recover ⊗ (composition in the Heisenberg picture) from ⊗̂
(composition in the Schrödinger picture) via the Chu construction (semantics of LL)
applied to OS.
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PLL and the Heisenberg-Schrödinger Duality

Schrödinger Picture Q LL+
System description T (HP) P

T (HP) ⊗̂ T (HR)
Quantum composition ∼= P ⊗ R

T (HP

2

⊗ HR)

Classical composition T (HP)
1

⊕ T (HR) P ⊕ R

Heisenberg Picture Q LL−
System description B(HN) N

B(HN)⊗ B(HM)
Quantum composition ∼= N

&

M

B(HN

2

⊗ HM)

Classical composition B(HN)
∞
⊕ B(HM) N &M

Schrödinger picture⇒ positive logical polarity

Heisenberg picture⇒ negative logical polarity

Remark: can be extended to von Neumann algebras and their preduals.
Future work: constructive description of Lafont exponential in operator space theory.
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Future Work: Quantum Coherence Spaces

• Quantum Coherence Spaces à la Girard:
• not appropriate from a quantum point of view (e.g. criticism by Selinger).
• main problem: positivity instead of complete positivity, i.e., geometry instead of

noncommutative geometry.

• This paper: we lay the groundwork for future work on quantum coherence spaces.

• Future work: QCS such that we restrict relevant homsets to CPTP/NCPU (or
CPTNI/NCPSU for recursion).
• More results in our paper (arXiv:2505.06069):

• categorical structure of OS;
• interaction between pure and mixed state quantum computation;
• Haagerup tensor and links to BV-logic?

https://arxiv.org/abs/2505.06069
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• not appropriate from a quantum point of view (e.g. criticism by Selinger).
• main problem: positivity instead of complete positivity, i.e., geometry instead of

noncommutative geometry.

• This paper: we lay the groundwork for future work on quantum coherence spaces.

• Future work: QCS such that we restrict relevant homsets to CPTP/NCPU (or
CPTNI/NCPSU for recursion).

• More results in our paper (arXiv:2505.06069):
• categorical structure of OS;
• interaction between pure and mixed state quantum computation;
• Haagerup tensor and links to BV-logic?

https://arxiv.org/abs/2505.06069


Introduction Banach Spaces Hilbert Spaces Heisenberg-Schrödinger Duality HS duality, Operator Spaces and LL

Future Work: Quantum Coherence Spaces

• Quantum Coherence Spaces à la Girard:
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Thank you for your attention!
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