Banach Spaces

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL 000000000000

Operator Spaces, Linear Logic and the Heisenberg-Schrödinger Duality of Quantum Theory

Vladimir Zamdzhiev Inria, Laboratoire Méthodes Formelles

IRN - Logic and Interaction 13.05.2025 Joint work with Bert Lindenhovius

ach Spaces

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL 000000000000

Motivation

- Two pictures to describe quantum theory:
 - Schrödinger picture: modify "state".
 - Heisenberg picture: modify "observable".
 - Often said to be "dual" to each other.
- Is the Heisenberg-Schrödinger duality also a duality in the sense of Classical Linear Logic (CLL)?

anach Spaces

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL 000000000000

Scientific Approach

- Need a rigorous mathematical description of the Heisenberg-Schrödinger duality.
- This can be achieved by combining results from:
 - **Functional analysis**, e.g. Hilbert spaces, Banach spaces fundamental for quantum theory in general;
 - **Operator algebras**, e.g. von Neumann algebras, C*-algebras fundamental for the Heisenberg picture (in infinite dimensions);
 - **Noncommutative geometry**, e.g. Operator Spaces important for both pictures (in infinite dimensions).
- Afterwards, we perform a **categorical** analysis and organise the relevant mathematical structure into models of ILL/CLL.
- Describe facets of the duality in terms of **Polarised** Linear Logic:
 - Schrödinger picture ⇒ positive logical polarity;
 - Heisenberg picture \Rightarrow negative logical polarity;

Banach Spaces

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL 000000000000

Banach Spaces

Definition

A Banach space is a complex vector space X equipped with a norm $||-||: X \to [0, \infty)$ (i.e. a normed space) which is complete with respect to the topology induced by the norm. More specifically, this means that every Cauchy sequence $(x_n)_{n\in\mathbb{N}}$ ¹ in X has a topological limit, i.e. there exists $x \in X$, such that $\lim_{n\to\infty} ||x_n - x|| = 0$.

Example

- $M_n(\mathbb{C})$, the $n \times n$ complex matrices with operator norm.
- Every finite-dimensional normed space.

 $^{1}\forall \epsilon > 0.\exists N \in \mathbb{N}. \forall i, j > N. ||x_{i} - x_{j}|| < \epsilon$

Banach Spaces

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL 000000000000

Bounded Operators

Definition

Let X and Y be Banach spaces and let $f: X \to Y$ be a linear map (aka operator). We say that f is:

- bounded iff there exists r > 0 such that $||f(x)|| \le r||x||$ for all $x \in X$;
- continuous iff f is continuous w.r.t the norm topologies of X and Y;
- a contraction iff $||f(x)|| \le ||x||$ for all $x \in X$;
- an isometry iff ||f(x)|| = ||x|| for all $x \in X$.

Definition

We write **Ban** for the category of Banach spaces with contractions as morphisms and **FdBan** for the full subcategory consisting of finite-dimensional Banach spaces.

tion B

Banach Spaces

lilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL 00000000000

Banach Spaces of Operators

• The space $B(X, Y) \stackrel{\text{def}}{=} \{f : X \to Y \mid f \text{ bounded}\}\$ is a Banach space w.r.t the *operator norm* given by

$$\|f\| \stackrel{\text{def}}{=} \sup\{\|f(x)\| : x \in X \text{ and } \|x\| \le 1\}$$

- We write $B(X) \stackrel{\text{def}}{=} B(X, X)$ for the Banach space of bounded operators on X.
- **Example:** $B(\mathbb{C}^n) \cong M_n(\mathbb{C})$, where \mathbb{C}^n is equipped with the ℓ^2 -norm.

ion Banach Spaces

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL 000000000000

Banach Space Duals

- We write $X^* \stackrel{\text{def}}{=} B(X, \mathbb{C})$ for the Banach space *dual* of X.
- **Fact:** For any Banach space X, we have $X \hookrightarrow X^{**}$ isometrically.
- Fact: If X finite-dimensional, then $X \cong X^{**}$ isometrically.
- If f: X → Y is bounded, the dual map f*: Y* → X* is called the Banach space adjoint.

Banach Space Tensor Products

- Let X and Y be Banach spaces and consider the algebraic tensor product X ⊗ Y (i.e. as vector spaces). Not a Banach space, in general.
- Tensor $X \otimes_{\alpha} Y$ is a completion of $X \otimes Y$ w.r.t a suitable norm α .
- Then $X \otimes Y \subseteq X \otimes_{\alpha} Y$ is a dense subset.
- Notable tensor products:

Banach Spaces

- Injective tensor product $X \otimes_{\epsilon} Y$, where ϵ is the smallest reasonable norm.
- Projective tensor product $X \otimes_{\pi} Y$, where π is the largest reasonable norm.
- If X and Y are finite-dimensional Banach spaces, then:
 - $X \otimes Y = X \otimes_{\alpha} Y$ as vector spaces.
 - $(X \otimes_{\epsilon} Y)^* \cong X^* \otimes_{\pi} Y^*$ isometrically.
 - $(X \otimes_{\pi} Y)^* \cong X^* \otimes_{\epsilon} Y^*$ isometrically.

Banach Spaces

Finite-dimensional Banach Spaces: Categorically and Logically

The category **FdBan** of finite-dimensional Banach spaces and linear contractions:

- is *-autonomous and has finite products and coproducts;
- therefore also a model of MALL (multiplicative additive linear logic):
 - multiplicative conjunction $X \otimes Y \stackrel{\text{def}}{=} X \otimes_{\pi} Y$;
 - multiplicative disjunction $X \Im Y \stackrel{\text{def}}{=} X \otimes_{\epsilon} Y$;
 - linear negation $X^{\perp} \stackrel{\text{def}}{=} X^*$;
 - additive conjunction $X \& Y \stackrel{\text{def}}{=} X \oplus^{\infty} Y$;
 - additive disjunction $X \oplus Y \stackrel{\text{def}}{=} X \oplus^1 Y$;

Ban

HS duality, Operator Spaces and LL 00000000000

Categorical and Logical Structure of Banach Spaces

The category **Ban** of Banach spaces and linear contractions:

- 1. has a symmetric monoidal closed structure:
 - 1.1 Monoidal product $X \otimes_{\pi} Y$.
 - 1.2 Internal hom B(X, Y).
- 2. is complete (products $\iff \ell^{\infty}$ -direct sums).
- 3. is cocomplete (coproducts $\iff \ell^1$ -direct sums).
- 4. is locally \aleph_1 -presentable.
- 5. forms a model of ILL. In fact, two exponentials:

5.1 The one induced by the adjunction Set ℓ^1

5.2 The Lafont exponential (induced by 1, 4 and SAFT).

Remark: Nothing new here, this was already known or easy to deduce!

- Banach spaces (functional analysis) are fundamental for our understanding of infinite-dimensional quantum theory.
- However, they are not sufficient. We also need **noncommutative geometry** and **operator algebras**.

Banach Spaces

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL 000000000000

Hilbert Spaces

Definition

A Hilbert space H is a complex inner-product space such that H is a Banach space w.r.t the ℓ^2 -norm $\|h\| \stackrel{\text{def}}{=} \sqrt{\langle h, h \rangle}$.

Example

The Hilbert space \mathbb{C}^n with $\langle x, y \rangle \stackrel{\text{def}}{=} \sum_{i=1}^n \overline{x_i} y_i$.

Example

For any set S, the space

$$\ell^2(S) \stackrel{\mathrm{def}}{=} \left\{ f \colon S o \mathbb{C} \ | \ \sum_{s \in S} |f(s)|^2 < \infty
ight\}$$

with inner product $\langle f|g \rangle \stackrel{\text{def}}{=} \sum_{s \in S} \overline{f(s)}g(s)$. Every Hilbert space *H* is unitarily isomorphic to $\ell^2(S)$ for a set *S* with $\operatorname{card}(S) = \dim(H)$.

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL 000000000000

Pure State vs Mixed State Quantum Computation

- In *pure state* quantum computation:
 - A pure state $|\psi\rangle$ is a normalised vector in a Hilbert space *H*.
 - Emphasis on unitary dynamics, i.e. operations described by unitary operators $U: H_1 \rightarrow H_2$.
- In *mixed state* quantum computation: emphasis on observational behaviour. Hilbert spaces not enough!

Banach Spaces

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL 00000000000

Operators on Hilbert Spaces

- The Hilbert space tensor product $H \otimes K$ gives a symmetric monoidal structure.
- No monoidal closed structure for infinite-dimensional Hilbert spaces.
 - $B(H_1, H_2)$ is a Banach space (functional analysis).
 - $B(H_1, H_2)$ is also an operator space (noncommutative geometry).
 - $B(H) \stackrel{\text{def}}{=} B(H, H)$ is a von Neumann algebra (operator algebra).

- Problem: Quantum measurement not a morphism between Hilbert spaces.
- Quantum measurement ⇒ mixed-state computation ⇒ noncommutative geometry and operator algebras.

Mixed-state computation and the Heisenberg-Schrödinger Duality

- Quantum operations (also known as channels) can be modeled in two pictures:
 - Heisenberg picture as NCPU (normal completely-positive unital maps) $\varphi : B(H_2) \rightarrow B(H_1)$.
 - Schrödinger picture as CPTP (completely-positive trace-preserving maps) $\psi: T(H_1) \rightarrow T(H_2).$
 - We have $B(H) \cong T(H)^*$ as Banach spaces and $\varphi = \psi^*$ (modulo isomorphism).

n Bana 0000 Hilbert Space

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL 000000000000

Trace Class Operators

- The trace class T(H) ⊆ B(H) is a two-sided ideal for which we have a meaningful notion of trace.
- T(H) is a Banach space w.r.t trace norm and $T(H)^* \cong B(H)$, i.e. T(H) is the predual of B(H).
- We have a bounded operator tr: $T(H) \to \mathbb{C}$:: $f \mapsto \sum_{\lambda} \langle e_{\lambda}, fe_{\lambda} \rangle$, where $\{e_{\lambda}\}_{\lambda \in \Lambda}$ can be any ONB of H.
- Intuition: Recall that in PLL, for a positive formula *P* we have *P* −∞!*P* and so we have canonical counit and comultiplication maps.
- For T(H), obvious candidate for counit, namely the trace.

ces H

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL 000000000000

Quantum Operations in the Schrödinger Picture

- An element $t \in T(H)$ is positive if $\langle h, th \rangle \ge 0$, for all $h \in H$.
- A bounded map $\varphi \colon T(H_1) \to T(H_2)$ is:
 - *positive*, if φ preserves positive elements;
 - completely positive, if (intuitively) φ ⊗ id: T(H₁ ² ⊗ Cⁿ) → T(H₂ ² ⊗ Cⁿ) is positive for every n ∈ N. Full details omitted.
 - trace-preserving, if $tr(\varphi(t)) = tr(t)$.
- A quantum operation (aka quantum channel) from H_1 to H_2 is a CPTP map $\varphi \colon T(H_1) \to T(H_2)$.
- A state of H in the Schrödinger picture is a density operator: $\rho \in T(H)$ such that $tr(\rho) = 1$ and $0 \le \rho$.
- Equivalently, states may be identified with the (C)PTP maps $\varphi \colon \mathbb{C} \to T(H)$.
- **Example:** $\sum_{n=1}^{\infty} 2^{-n} |n\rangle \langle n|$ is a density operator on $\ell^2(\mathbb{N})$.

Banach Spaces

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL 000000000000

Normal Maps

A linear map φ: B(H₁) → B(H₂) is called *normal* if there exists a (necessarily unique) bounded operator φ_{*}: T(H₂) → T(H₁) such that

- Remark: Equivalent definition continuity w.r.t ultraweak topology.
- **Remark:** $B(H)_* \cong T(H)$ and one can see $(-)_*$ as a contravariant functor.

Hilbert Spac

HS duality, Operator Spaces and LL 000000000000

Quantum Operations in the Heisenberg Picture

- A linear map $\varphi \colon B(H_1) \to B(H_2)$ is called *unital* if $\varphi(I_{H_1}) = I_{H_2}$.
- A quantum operation (aka quantum channel) from H₁ to H₂ in the Heisenberg picture is a normal completely positive unital (NCPU) map φ: B(H₁) → B(H₂).
- A "state" of *H* in the Heisenberg picture is given by a N(C)PU map $\varphi \colon B(H) \to \mathbb{C}$.
- Every such "state" is necessarily of the form φ = tr(ρ−) for a uniquely determined density operator ρ ∈ T(H).
- **Remark:** the word "state", as used here, is standard in the *mathematics* literature on operator algebras.

Duality between the Heisenberg and Schrödinger Pictures

- In what sense are the two pictures dual to each other?
- There is a bijective correspondence

 $\mathsf{CPTP}(T(H_1), T(H_2)) \cong \mathsf{NCPU}(B(H_2), B(H_1))$

 $\varphi \mapsto \varphi^*$ (modulo isometric isomorphism) $\varphi_* \leftarrow \varphi$ (modulo isometric isomorphism)

- If H_1 and H_2 finite-dimensional, this is just linear-algebraic transposition.
- General case: transposition in the sense of dual pairings between topological vector spaces. The dual pairing is given by tr: T(H) × B(H) → C :: (t, a) → tr(ta).
- This family of bijections determines a contravariant isomorphism of categories **CPTP** \cong **NCPU**^{op} where objects are taken to be Hilbert spaces.

Heisenberg-Schrödinger duality = LL duality?

- T(H) and B(H) not Hilbert spaces in general.
- T(H) and B(H) Banach spaces, but multiple problems with LL models:
 - Linear-algebraic transposition (−)^T: M_n(ℂ) → M_n(ℂ) is a positive isometric isomorphism, but not completely positive for n ≥ 2. How to get rid of it?
 - How to model multiplicative conjunction/disjunction?

 $T(H) \otimes_{?1} T(K) \cong T(H \overset{2}{\otimes} K)$ (composition in Schrödinger picture)

 $B(H) \otimes_{?2} B(K) \cong B(H \overset{2}{\otimes} K)$ (composition in Heisenberg picture)

• **Solution: noncommutative geometry**. Right kinds of tensors and transposition is not *completely* contractive, not *completely* isometric, not *completely* positive.

ces

Operator Spaces = Noncommutative Banach Spaces

- The noncommutative (i.e. quantum) analogue of Banach spaces are called *Operator Spaces*.
- Part of the program of **noncommutative geometry**.
- B(H) and T(H) are operator spaces.
- Every von Neumann algebra, C*-algebra (from **operator algebra** theory, used for the Heisenberg picture) is also an operator space.

•
$$(-)^T : M_n \to M_n$$
 is not a morphism for $n \ge 2$.

• Right kinds of tensor products:

$$T(H) \stackrel{\circ}{\otimes} T(K) \cong T(H \stackrel{2}{\otimes} K)$$
$$B(H) \stackrel{\overline{\otimes}}{\otimes} B(K) \cong B(H \stackrel{2}{\otimes} K)$$

(completely projective tensor)

(spatial tensor of von Neumann algebras)

Banach Spaces

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL

What is an Operator Space?

Definition

An (abstract) operator space is a vector space X together with a family of norms

$$\{\|\cdot\|_n\colon \mathbb{M}_n(X)\to [0,\infty)\mid n\in\mathbb{N}\},\$$

such that:

(B) The pair (M₁(X), ||·||₁) is a Banach space;
(M1) ||x ⊕ y||_{m+n} = max{||x||_m, ||y||_n}
(M2) ||αxβ||_m ≤ ||α|||x||_m||β|| for each n, m ∈ N, x ∈ M_m(X), y ∈ M_n(X), α, β ∈ M_m. We write M_n(X) for the Banach space, in fact operator space, (M_n(X), ||·||_n). Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL

What are the morphisms of operator spaces?

Definition

Let $u: X \to Y$ be a linear map between operator spaces X and Y. We write $u_n: M_n(X) \to M_n(Y)$ for the linear map $[x_{ij}] \mapsto [u(x_{ij})]$. We say that u is:

- completely bounded, if $\|u\|_{\mathrm{cb}} \stackrel{\mathrm{def}}{=} \sup_{n \in \mathbb{N}} \|u_n\| < \infty$.
- a complete contraction, if u_n is a contraction for each $n \in \mathbb{N}$.
- a *complete isometry*, if u_n is an isometry for each $n \in \mathbb{N}$.
- a *completely isometric isomorphism*, if *u* is a surjective complete isometry.

Remark: The map u_n , known as the *n*-th amplification of u, can be thought of as the map $id_{M_n} \otimes u$. This can be made precise, via a natural isomorphism, via the completely injective tensor product, which enjoys the property

$$M_n(X) \cong M_n \overset{{}_{inj}}{\otimes} X$$

Banach S

Hilber

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL 00000000000

Categories of Operator Spaces

- **OS** the category of operator spaces with *complete* contractions as morphisms.
- **OS** is the noncommutative (or quantum) analogue of **Ban**.
- Noncommutative analogues for Banach space constructions:
 - CB(X, Y) the operator space of *completely* bounded maps. Internal hom.
 - $X \otimes Y$ the *completely* projective tensor product. Monoidal product.
 - $X \overset{{}_{inj}}{\otimes} Y$ the *completely* injective tensor product. Another monoidal product.
 - $X^* \stackrel{\text{def}}{=} CB(X, \mathbb{C})$ operator space dual. Compatible with Banach space dual.
 - ℓ^1 -direct sums and ℓ^∞ -direct sums. (Co)products. Compatible with Banach space counterparts.

Finite-dimensional Operator Spaces: Categorically and Logically

The category FdOS of finite-dimensional operator spaces and complete contractions:

- is *-autonomous and has finite products and coproducts;
- therefore also a model of MALL:
 - multiplicative conjunction $X \otimes Y$.
 - multiplicative disjunction $X \overset{{}_{inj}}{\otimes} Y$.
 - linear negation $X^{\perp} \stackrel{\text{def}}{=} X^*$.
 - additive conjunction $X \& Y \stackrel{\text{def}}{=} X \oplus^{\infty} Y$.
 - additive disjunction $X \oplus Y \stackrel{\text{def}}{=} X \oplus^1 Y$.
- $\bullet\,$ In addition to Ban, we also get the right tensors:
 - $T(H_1) \otimes T(H_2) \cong T(H_1 \otimes H_2)$ (composition in Schrödinger picture).
 - $B(H_1) \overset{{}_{inj}}{\otimes} B(H_2) \cong B(H_1 \otimes H_2)$ (composition in Heisenberg picture).
 - Note: $\overline{\otimes} = \overset{_{inj}}{\otimes}$ for finite-dimensional von Neumann algebras, like above.
- Part of internship project of Thea Li.

Hilbert Spaces

HS duality, Operator Spaces and LL

Categorical and Logical Structure of Operator Spaces

The category **OS** of operator spaces and *complete* contractions:

- 1. has a symmetric monoidal closed structure:
 - 1.1 Monoidal product $X \otimes Y$. Moreover, $T(H_1) \otimes T(H_2) \cong T(H_1 \otimes H_2)$.
 - 1.2 Internal hom CB(X, Y).
- 2. is complete (products $\iff \ell^{\infty}$ -direct sums).
- 3. is cocomplete (coproducts $\iff \ell^1$ -direct sums).
- 4. is locally \aleph_1 -presentable. (Most important result in our paper)
- 5. forms a model of ILL. In fact, two exponentials:

5.1 The one induced by the adjunction Set
$$\xrightarrow{\ell^1}$$
 Ball OS

5.2 The Lafont exponential (induced by 1, 4 and SAFT).

Remark: Principle categorical difference with Ban: the strong generators in 4.

Banach Sp 0000000 Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL

Mixed-State Computation

- Let $\varphi: B(H_1) \to B(H_2)$ be a linear unital map. Then, φ is completely-positive iff φ is a complete contraction.²
- Let φ: T(H₁) → T(H₂) be a linear trace-preserving map. Then, φ is completely-positive iff φ is a complete contraction.
- Therefore CPTP and NCPU maps are complete contractions and in **OS**.

²Also holds for von Neumann algebras and operator systems.

Spaces

Heisenberg-Schröd

HS duality, Operator Spaces and LL

CLL and Heisenberg-Schrödinger Duality

- **OS** is not *-autonomous.
- However, Q ^{def} = Chu(OS, ℂ) is (co)complete, *-autonomous, has a Lafont exponential and it is a model of CLL. Follows using results of Barr.
- Objects are triples (X, Y, d), where $d \colon X \otimes Y \to \mathbb{C}$ is a complete contraction.
- a morphism is a pair $(f,g)\colon (X_1,Y_1,d_1) o (X_2,Y_2,d_2)$ such that

$$\begin{array}{c|c} X_1 \stackrel{\circ}{\otimes} Y_2 & \xrightarrow{X_1 \stackrel{\circ}{\otimes} g} & X_1 \stackrel{\circ}{\otimes} Y_1 \\ f \stackrel{\circ}{\otimes} Y_2 & & & \downarrow \\ & X_2 \stackrel{\circ}{\otimes} Y_2 & \xrightarrow{Q_2} & & \mathbb{C} \end{array}$$

If $X_i = T(H_i)$, $Y_i = B(H_i)$, and $d_i = \text{tr}$, the diagram commutes iff $f = g^t$, i.e. f is the transpose w.r.t dual pairing of the Heisenberg-Schrödinger duality.

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL

Multiplicatives in **Q** and the Heisenberg-Schrödinger Duality

Theorem The monoidal product

 $(T(H_1), B(H_1), tr) \otimes (T(H_2), B(H_2), tr)$

in ${\boldsymbol{\mathsf{Q}}}$ is the object

 $(T(H_1) \otimes T(H_2), B(H_1) \overline{\otimes} B(H_2), tr').$

Remark: We can recover $\overline{\otimes}$ (composition in the Heisenberg picture) from $\hat{\otimes}$ (composition in the Schrödinger picture) via the Chu construction (semantics of LL) applied to **OS**.

nach Spaces 000000 Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL

PLL and the Heisenberg-Schrödinger Duality

Schrödinger Picture	Q	LL+
System description	$T(H_P)$	Р
Quantum composition	$T(H_P) \stackrel{\circ}{\otimes} T(H_R) \\ \cong \\ T(H_P \stackrel{\circ}{\otimes} H_R)$	$P \otimes R$
Classical composition	$T(H_P) \stackrel{i}{\oplus} T(H_R)$	$P \oplus R$

Heisenberg Picture	Q	LL_{-}
System description	$B(H_N)$	N
Quantum composition	$B(H_N) \overline{\otimes} B(H_M) \\ \cong \\ B(H_N \overset{2}{\otimes} H_M)$	N & M
Classical composition	$B(H_N) \stackrel{\infty}{\oplus} B(H_M)$	N & M

Schrödinger picture \Rightarrow positive logical polarity Heisenberg picture \Rightarrow negative logical polarity

nach Spaces

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL

PLL and the Heisenberg-Schrödinger Duality

Schrödinger Picture	Q	LL+
System description	$T(H_P)$	Р
Quantum composition	$T(H_P) \stackrel{\circ}{\otimes} T(H_R) \\ \cong \\ T(H_P \stackrel{\circ}{\otimes} H_R)$	$P \otimes R$
Classical composition	$T(H_P) \stackrel{i}{\oplus} T(H_R)$	$P \oplus R$

Heisenberg Picture	Q	LL_
System description	$B(H_N)$	N
Quantum composition	$B(H_N) \overline{\otimes} B(H_M) \\ \cong \\ B(H_N \overset{2}{\otimes} H_M)$	N & M
Classical composition	$B(H_N) \stackrel{\infty}{\oplus} B(H_M)$	N & M

Schrödinger picture \Rightarrow positive logical polarity Heisenberg picture \Rightarrow negative logical polarity

Remark: can be extended to von Neumann algebras and their preduals.

ach Spaces

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL

PLL and the Heisenberg-Schrödinger Duality

Schrödinger Picture	Q	LL+
System description	$T(H_P)$	Р
Quantum composition	$T(H_P) \stackrel{\circ}{\otimes} T(H_R) \\ \cong \\ T(H_P \stackrel{\circ}{\otimes} H_R)$	$P \otimes R$
Classical composition	$T(H_P) \stackrel{i}{\oplus} T(H_R)$	$P \oplus R$

Heisenberg Picture	Q	LL_
System description	$B(H_N)$	N
Quantum composition	$B(H_N) \overline{\otimes} B(H_M) \\ \cong \\ B(H_N \overset{2}{\otimes} H_M)$	N & M
Classical composition	$B(H_N) \stackrel{\infty}{\oplus} B(H_M)$	N & M

Schrödinger picture \Rightarrow positive logical polarity Heisenberg picture \Rightarrow negative logical polarity

Remark: can be extended to von Neumann algebras and their preduals. **Future work:** constructive description of Lafont exponential in operator space theory.

- Quantum Coherence Spaces à la Girard:
 - not appropriate from a quantum point of view (e.g. criticism by Selinger).
 - main problem: positivity instead of *complete* positivity, i.e., geometry instead of *noncommutative* geometry.
- This paper: we lay the groundwork for future work on quantum coherence spaces.

- Quantum Coherence Spaces à la Girard:
 - not appropriate from a quantum point of view (e.g. criticism by Selinger).
 - main problem: positivity instead of *complete* positivity, i.e., geometry instead of *noncommutative* geometry.
- This paper: we lay the groundwork for future work on quantum coherence spaces.
- Future work: QCS such that we restrict relevant homsets to CPTP/NCPU

- Quantum Coherence Spaces à la Girard:
 - not appropriate from a quantum point of view (e.g. criticism by Selinger).
 - main problem: positivity instead of *complete* positivity, i.e., geometry instead of *noncommutative* geometry.
- This paper: we lay the groundwork for future work on quantum coherence spaces.
- Future work: QCS such that we restrict relevant homsets to CPTP/NCPU (or CPTNI/NCPSU for recursion).

- Quantum Coherence Spaces à la Girard:
 - not appropriate from a quantum point of view (e.g. criticism by Selinger).
 - main problem: positivity instead of *complete* positivity, i.e., geometry instead of *noncommutative* geometry.
- This paper: we lay the groundwork for future work on quantum coherence spaces.
- **Future work:** QCS such that we restrict relevant homsets to CPTP/NCPU (or CPTNI/NCPSU for recursion).
- More results in our paper (arXiv:2505.06069):
 - categorical structure of **OS**;
 - interaction between pure and mixed state quantum computation;
 - Haagerup tensor and links to BV-logic?

Banach Spaces

Hilbert Spaces

Heisenberg-Schrödinger Duality

HS duality, Operator Spaces and LL $_{\texttt{OOOOOOOOO}}$

Thank you for your attention!