Benoit Valiron (CentraleSupélec / LMF)
Joint work with Alejandro Diaz-Caro (UBA / Inria / LORIA)

May 13, 2025
IRN LI, Roma

Classical

Quantum

Basic register
Math model
Pure states

3 registers
Reading
Duplicable

bit

Set

B = {true, false}
BxBxB
Deterministic

Yes

quantum bit = gbit

Hilbert Spaces and Unitary maps
C2=(B) a-0)+4-1)
CPRC?rC?=C8= (B3
Probabilistic

No

Entangled state

1(00) + 1))

Cannot be written a pair of states

7 o) @)

Main Computer

Program
Execution flow

Interface

Instructions
/\
_/

Feedback

Co-processor

Quantum memory
Quantum operations

Standard Computational Model: Co-Processor

The quantum memory

» A set of individually addressable quantum registers

Actions through the interface
» Initialize registers

» Apply quantum operations

— Linear, unitary transformations on the state space
— No cloning of quantum states

» Read register
— Through probabilistic measurement

— Only access to quantum information
From the programmer’s perspective
» A probabilistic read operation

» Non-duplicable data

Local Operations
» Batch of low-level instructions
» Elementary operations applied on the quantum memory

» Written as a quantum circuit

input 0 1 2
. init 3
HO
D
Input Output CNOT 2 1
NOT 3
o} D discard 1

output 0 2 3

Wires
» One wire: one gbit, encapulated in a type gbit

» Several wires: array of gbits, one per wire
gbit ® qbit ® --- ® qbit

Circuits

» Inputs one gbit
» Qutputs a pair of gbits
» Function from gbit to qbit ® gbit

» Side-effect: gates acting on the quantum memory

Terms
» Pairing constructs and fixpoints
» Boolean true and false, if-then-else
» Constant, opaque terms: qinit, measure, H, CNOT, ...
» Quantum states not in the language
— included as pointers
Operational semantics

» Abstract machine encapsulating the quantum memory:

(Z5(100) +[11)),) MF(x, 1))
state vector “linking function” lambda-term

» Call-by-value evaluation strategy

» Quantum operations through the evaluation strategy

Some terms are duplicable
» Boolean constants: true —|H}—o—
» Regular, pure lambda-terms: Ax.x ELa—

» Circuit-descriptions: Ax.(letz =HxinCNOT (z, qinit false))

Some terms should not be duplicable
» Qbits: H(ginit false)
» Tuples containing a gbit: (Ax.x, H(qinit false))
» Functions containing a gbit: lety = H(qinit false)in A\f.fy

Distinction between
» Procedure for generating a gbit: duplicable

» End result of the procedure: gbit value, non-duplicable

Standard type system
A B = qbit|bit | T|A®B|A— B|!(A— B)
» Based on linear logic
» Non-duplicable functions with A — B
» Duplicable functions with |(A — B)

» Quantum operations are e.g. measure : !(gbit —o bit)

Non-trivial mix
» Classical and quantum data, probabilistic setting

» Entanglement at higher-order

Quantum Lambda-Calculus: Historical Type System

Example of higher-order entanglement: Teleportation

J
=]

| measure

- - ==

=
=
é]
Jan
\\%
s

Quantum Lambda-Calculus: Historical Type System

Example of higher-order entanglement: Teleportation

- - - -
|

| measure

Quantum Lambda-Calculus: Historical Type System

Example of higher-order entanglement: Teleportation

e gbit ® gqbit —o bit @ bit
— ¥

—4

-
|
|
-
|
\

\ measure

T

...> qbit ® bit ® bit —o gbit

241qb @ 31qb”

Quantum Lambda-Calculus: Historical Type System

Example of higher-order entanglement: Teleportation

e gbit —o (qbit —o bit @ bit)
— |

—4

-
|
|
-
|
\

\ measure

T

...> gbit —o (bit ® bit —o gbit)

21qb @ 31qb”

Quantum Lambda-Calculus: Historical Type System

Example of higher-order entanglement: Teleportation

gbit —o bit ® bit

. bit @ bit

1

5 (100) + 11))

bit ® bit —o gbit
A pair of two entangled, non-duplicable, functions
(qbit — bit @ bit) ® (bit ® bit —o gbit)

inverses of each other.

10/24

Co-product

» A B

» Left and right injections
Lists

» Identify [A] with | & (A® [A])

Natural Numbers

» Constants 0, 1, 2, ...of type N

» Arithmetics operations and tests

Dependent types

» [A]n : lists of size n

» Vn: N, [gbit], —o [gbit],

» Categorical model from Selinger et al.
— Fibrations over a monoidal category

» Dependency limited to classical types

We aim at general dependency over any type
» MVP: Spell out the specification of the teleportation algorithm
“inverses of each other”

» Exploration tool: (intuitionistic) realizability

Semantic Types (for standard lambda-calculus)
» A (semantic) type is defined as a set of closed values
» Booleans : literally the terms “true” and “false”
» A X Bis...literally pairs of elements of A and elements of B
» A realizer : MIF Awhen M —*V € A
» A= B: set of values V such that YW € A, VW IF B

Syntactic Types
» Formal grammar:

AB:=S|X|A=B|AxB|VXA

with S a semantic type.
» Denotation of syntactic types: [A]g

[Xlo =0(X) [VX.Alo = (IAlyuix.—5)
s
0 : TVAr — P{sem types}

Typing judgements
» Based on the notion of syntactic types

» x:A,y:BF M: Cis defined as a relation meaning
VO,VV € [|Alo, YW € [|Blg, M[x:=V,y:= W]IF[Cls

» Typing rules becomes lemmas
— Logical properties driven by the computational behavior

Problems to solve
» Probabilistic evaluation strategy
» Evaluation uses an abstract machine [Q, L, M]

» There are no closed values of type qubits.

Solution we follow

» Semantic types are possibly open values
— Free variables assimilated with gbits

» Type of gbits: set of term variables!
» M- A means (provided that L captures all FV(M))

an [QaLaM] %*ZPI[QHLI’ \/I] with \V/I,\/,EA

» Limitation here: no reasonning on the structure of qubits

Recovering linear logic
» IA={V € A| FV(V) =0}

» Additive and multiplicative pairings

Additive Constructions
» Ax B={(V,W) | Ve A W e B}
» (x,Xx) € gbit X qbit
» A= B={V | YW e AVQ, [Q,L, VW]I- B}

Multiplicative Constructions
» A B={(V,W) | VeAWeB,FV(V)NnFV(W)=0}
» A— B={V | YW € Awith FV(V)n FV(W) =0,
vQ, [Q, L, VW] IF B}

» A feeling of separation logic!

We can reuse the standard definition

» Syntactic types (with our new constructors)
AB:=5|X|AxB|A®B|A=B|A—B|IA|YX.A
» Typing judgements: x : A,y : B+ M : C defined as
Y(V,W)e A® B,VYQ, [Q,L,M[x:=V,y:=W]]IF C

» We recover the original typing rules of the
quantum lambda-calculus

» With second-order quantifiers for free!

Equality Type for Qbits (one possibility)

{x} if FV(M) = FV(N) and if VQ,
[Q, L, M] and [Q, L, N] reduce to registers
in the same mixed state

() otherwise

(M:q N) 2

Probability of Success

P A {*} vaQ:[QaLaM]_ykpﬁf‘Fp
Pu(M) = { 0 otherwise

Built as a second layer on top of the previous one
» Syntactic types:

o,7 = Alo—o7|o®T|lo|Vx:Ao]|
M=, N|PEM)| ...
» The corresponding semantics type [o[g,¢ parameterized by

— 6 : mapping type variables to semantic types
— & : mapping term variables to terms

Semantics Types for the Quantifiers

[Vx : A,Jﬂg@ = m I]Uﬂe,gu{xzzv}
Ve[Ale

Example
The term A\z.x realizes

Vx 1 qbit,Vy : gbit, (x =g y¥) —o (y =4 X)

The term A\z.x realizes
Vx : gbit,Vy : gbit, (x =4 y¥) — (y =¢ X)
Comes from the fact that Az.x realizes the open formula
(x =qy) — (¥ =qx)
because

VO, VE, YU € [x =q yloe, * - |y =q¢ x[o.e

» U is just x

» &(x) and £(y) are “just” term variables
» They refer to quantum registers in a quantum memory

» Symmetry of equality comes from the symmetry of the “iff"”

Remember
We were able to build a (non-duplicable) pair of types:

(qbit — bit ® bit) ® (bit ® bit —o gbit)

Write this lambda-term (alice, bob) and the type as Aajice ® Bpob
By construction, these two functions are inverses of each other.

Dependent Specification
With our equality type, this is

Vx : bit, bob (alice x) =¢ x

But alice and bob are entangled
— they only make sense with their quantum state.

Instead, the pair can be regarded as a witness for the type

VX.(Vf : Aslice, V& : Bbob, (Vx : gbit, g(fx) =4 x) = X) = X

Let us spell it down A term of type
VX.(Vf : Aslice, V8 : Bhob, (Vx : qbit, g(fx) =g x) = X) = X

inputs a function of 1 argument, and feed it with
» a witness that g o f is the identity
» for some f of type gbit —o bit ® bit
» and some g of type bit ® bit —o gbit

Our pair contains these elements.
The witness is implicit: the property is true by definition.

Said otherwise It is “logically” the same as
=V : Aslice, V8 : Bbob, (VX : qbit, g(fx) =4 x)
which is

—=3f : Aalice; 38 : Bbob, Vx 1 gbit, g(fx) =q x

We would love the term Az.\z' % to realize

1 1
Vx : qbit,Vy : gbit, (x =4 y) —o P2 (x) —o P2 (v)

This should come from that Az.\Z'. realizes the open formula

(x =q y) —o Pr(x 72)_°'Dtt()’a2)
le.

VO, V&, YU € [x =q yloge. YV € [Pu(x, D)loe, *IF [Pe(y, 2)loe

» Uand V are x
» &(x) and £(y) are “just” term variables

» They refer to quantum registers in a quantum memory
» But each dependent relation uses its own quantum context!

» Elements of type gbit only refers to registers. . .

» Realizability: A versatile framework

» Novel typing construction for the quantum lambda-calculus
» Captures quantification over qubits!

» Still limited. ..

» But gives hints as of where to search

To be continued. . .

...and presented at the next IRN-LI seminar?

