
1/24

Quantum Lambda-Calculus: Realizability and
Emerging Logical Properties

Benoît Valiron (CentraleSupélec / LMF)
Joint work with Alejandro Díaz-Caro (UBA / Inria / LORIA)

May 13, 2025
IRN LI, Roma

2/24

Quantum Computation

Classical Quantum

Basic register bit quantum bit = qbit

Math model Set Hilbert Spaces and Unitary maps

Pure states B = {true, false} C2 ≡ ⟨B⟩ α · |0⟩ + β · |1⟩

3 registers B × B × B C2 ⊗ C2 ⊗ C2 = C8 ≡ ⟨B3⟩

Reading Deterministic Probabilistic

Duplicable Yes No

Entangled state Cannot be written a pair of states
1√
2(|00⟩ + |11⟩) ̸= |ϕ⟩ ⊗ |ψ⟩

3/24

Standard Computational Model: Co-Processor

Main Computer
Program
Execution flow

Interface
Instructions

**

Feedback
ii

Co-processor
Quantum memory

Quantum operations

4/24

Standard Computational Model: Co-Processor

The quantum memory
» A set of individually addressable quantum registers

Actions through the interface
» Initialize registers
» Apply quantum operations

− Linear, unitary transformations on the state space
− No cloning of quantum states

» Read register
− Through probabilistic measurement
− Only access to quantum information

From the programmer’s perspective
» A probabilistic read operation
» Non-duplicable data

5/24

Standard Computational Model: Co-Processor

Local Operations
» Batch of low-level instructions
» Elementary operations applied on the quantum memory
» Written as a quantum circuit

Input

 0

H

Output

input 0 1 2
init 3
H 0
CNOT 2 1
NOT 3
discard 1
output 0 2 3

6/24

Quantum Circuits as Functions

Wires
» One wire: one qbit, encapulated in a type qbit

» Several wires: array of qbits, one per wire
qbit ⊗ qbit ⊗ · · · ⊗ qbit

Circuits

0

H

» Inputs one qbit
» Outputs a pair of qbits
» Function from qbit to qbit ⊗ qbit

» Side-effect: gates acting on the quantum memory

7/24

Quantum Lambda-Calculus

Terms
» Pairing constructs and fixpoints
» Boolean true and false, if-then-else
» Constant, opaque terms: qinit, measure, H, CNOT, . . .
» Quantum states not in the language

→ included as pointers

Operational semantics
» Abstract machine encapsulating the quantum memory:(

1√
2(|00⟩ + |11⟩), |xy⟩ , λf .f ⟨x , y⟩

)
state vector “linking function” lambda-term

» Call-by-value evaluation strategy
» Quantum operations through the evaluation strategy

8/24

Quantum Lambda-Calculus

0

H

Some terms are duplicable
» Boolean constants: true

» Regular, pure lambda-terms: λx .x
» Circuit-descriptions: λx .(let z = H x in CNOT ⟨z , qinit false⟩)

Some terms should not be duplicable
» Qbits: H (qinit false)
» Tuples containing a qbit: ⟨λx .x , H (qinit false)⟩
» Functions containing a qbit: let y = H (qinit false) inλf .f y

Distinction between
» Procedure for generating a qbit: duplicable
» End result of the procedure: qbit value, non-duplicable

9/24

Quantum Lambda-Calculus: Historical Type System

Standard type system
A,B ::= qbit | bit | ⊤ | A ⊗ B | A ⊸ B | !(A ⊸ B)

» Based on linear logic
» Non-duplicable functions with A ⊸ B
» Duplicable functions with !(A ⊸ B)
» Quantum operations are e.g. measure : !(qbit ⊸ bit)

Non-trivial mix
» Classical and quantum data, probabilistic setting
» Entanglement at higher-order

10/24

Quantum Lambda-Calculus: Historical Type System

Example of higher-order entanglement: Teleportation

H|0⟩

|0⟩

H

m
e
a
s
u
r
e

Uxy

x, y

10/24

Quantum Lambda-Calculus: Historical Type System

Example of higher-order entanglement: Teleportation

H|0⟩

|0⟩

H

m
e
a
s
u
r
e

Uxy

10/24

Quantum Lambda-Calculus: Historical Type System

Example of higher-order entanglement: Teleportation

H|0⟩

|0⟩

H

m
e
a
s
u
r
e

Uxy

q
b
i
t
⊗
q
b
i
t

qbit⊗ bit⊗ bit ⊸ qbit

qbit⊗ qbit ⊸ bit⊗ bit

10/24

Quantum Lambda-Calculus: Historical Type System

Example of higher-order entanglement: Teleportation

H|0⟩

|0⟩

H

m
e
a
s
u
r
e

Uxy

q
b
i
t
⊗
q
b
i
t

qbit ⊸ (bit⊗ bit ⊸ qbit)

qbit ⊸ (qbit ⊸ bit⊗ bit)

10/24

Quantum Lambda-Calculus: Historical Type System

Example of higher-order entanglement: Teleportation

H

m
e
a
s
u
r
e

Uxy

bit⊗ bit ⊸ qbit

qbit ⊸ bit⊗ bit

1√
2

(
|00⟩+ |11⟩

)

qbit

bit⊗ bit

bit⊗ bit

qbit

A pair of two entangled, non-duplicable, functions
(qbit ⊸ bit ⊗ bit) ⊗ (bit ⊗ bit ⊸ qbit)

inverses of each other.

11/24

Type System Extensions: The Easy Part

Co-product

» A ⊕ B
» Left and right injections

Lists

» Identify [A] with I ⊕ (A ⊗ [A])

Natural Numbers

» Constants 0, 1, 2, . . . of type N
» Arithmetics operations and tests

12/24

Type System Extensions: The Hard Part

Dependent types

» [A]n : lists of size n
» ∀n : N, [qbit]n ⊸ [qbit]n
» Categorical model from Selinger et al.

→ Fibrations over a monoidal category
» Dependency limited to classical types

We aim at general dependency over any type
» MVP: Spell out the specification of the teleportation algorithm

“inverses of each other”
» Exploration tool: (intuitionistic) realizability

13/24

(Intuitionistic, Standard) Realizability

Semantic Types (for standard lambda-calculus)
» A (semantic) type is defined as a set of closed values
» Booleans : literally the terms “true” and “false”
» A × B is. . . literally pairs of elements of A and elements of B
» A realizer : M ⊩ A when M →∗ V ∈ A
» A ⇒ B: set of values V such that ∀W ∈ A, VW ⊩ B

Syntactic Types
» Formal grammar:

A,B ::= Ṡ | X | A ⇒ B | A × B | ∀X .A

with S a semantic type.
» Denotation of syntactic types: [|A|]θ

[|X |]θ = θ(X) [|∀X .A|]θ =
⋂
S

[|A|]θ∪{X :=Ṡ}

θ : TVAr → P{sem types}

14/24

(Intuitionistic, Standard) Realizability

Typing judgements
» Based on the notion of syntactic types
» x : A, y : B ⊢ M : C is defined as a relation meaning

∀θ,∀V ∈ [|A|]θ, ∀W ∈ [|B|]θ, M[x := V , y := W] ⊩ [|C |]θ

» Typing rules becomes lemmas
→ Logical properties driven by the computational behavior

15/24

Realizability for the Quantum Lambda-Calculus

Problems to solve
» Probabilistic evaluation strategy
» Evaluation uses an abstract machine [Q, L,M]
» There are no closed values of type qubits.

Solution we follow
» Semantic types are possibly open values

→ Free variables assimilated with qbits
» Type of qbits: set of term variables!
» M ⊩ A means (provided that L captures all FV (M))

∀Q, [Q, L,M] →∗ ∑
i

pi · [Qi , Li ,Vi] with ∀i ,Vi ∈ A

» Limitation here: no reasonning on the structure of qubits

16/24

Realizability for the Quantum Lambda-Calculus

Recovering linear logic
» !A = {V ∈ A | FV (V) = ∅}
» Additive and multiplicative pairings

Additive Constructions
» A × B = {⟨V ,W ⟩ | V ∈ A,W ∈ B}
» ⟨x , x⟩ ∈ qbit × qbit

» A ⇒ B = {V | ∀W ∈ A, ∀Q, [Q, L,VW] ⊩ B}

Multiplicative Constructions
» A ⊗ B = {⟨V ,W ⟩ | V ∈ A,W ∈ B,FV (V) ∩ FV (W) = ∅}
» A ⊸ B = {V | ∀W ∈ A with FV (V) ∩ FV (W) = ∅,

∀Q, [Q, L,VW] ⊩ B}
» A feeling of separation logic!

17/24

Syntactic Types and Typing Judgements

We can reuse the standard definition
» Syntactic types (with our new constructors)

A,B ::= Ṡ | X | A × B | A ⊗ B | A ⇒ B | A ⊸ B | !A | ∀X .A

» Typing judgements: x : A, y : B ⊢ M : C defined as

∀⟨V ,W ⟩ ∈ A ⊗ B, ∀Q, [Q, L,M[x := V , y := W]] ⊩ C

» We recover the original typing rules of the
quantum lambda-calculus

» With second-order quantifiers for free!

18/24

Some “Interesting” Dependent Types

Equality Type for Qbits (one possibility)

(M =q N) ≜

{⋆} if FV (M) = FV (N) and if ∀Q,

[Q, L,M] and [Q, L,N] reduce to registers
in the same mixed state

∅ otherwise

Probability of Success

Pp
tt(M) ≜

{
{⋆} if ∀Q, [Q, L,M] →∗ p · tt + ρ
∅ otherwise

19/24

A Dependent Type System

Built as a second layer on top of the previous one
» Syntactic types:

σ, τ ::= A | σ ⊸ τ | σ ⊗ τ | !σ | ∀x : A, σ |
M =q N | Pp

tt(M) | . . .

» The corresponding semantics type [|σ|]θ,ξ parameterized by
− θ : mapping type variables to semantic types
− ξ : mapping term variables to terms

Semantics Types for the Quantifiers

[|∀x : A, σ|]θ,ξ :=
⋂

V ∈[|A|]θ

[|σ|]θ, ξ∪{x :=V }

Example
The term λz .⋆ realizes

∀x : qbit, ∀y : qbit, (x =q y) ⊸ (y =q x)

20/24

Deriving the Example

The term λz .⋆ realizes

∀x : qbit, ∀y : qbit, (x =q y) ⊸ (y =q x)

Comes from the fact that λz .⋆ realizes the open formula

(x =q y) ⊸ (y =q x)

because

∀θ, ∀ξ, ∀U ∈ [|x =q y |]θ,ξ, ⋆ ⊩ [|y =q x |]θ,ξ

» U is just ⋆
» ξ(x) and ξ(y) are “just” term variables
» They refer to quantum registers in a quantum memory
» Symmetry of equality comes from the symmetry of the “iff”

21/24

Back to Teleportation

Remember
We were able to build a (non-duplicable) pair of types:

(qbit ⊸ bit ⊗ bit) ⊗ (bit ⊗ bit ⊸ qbit)

Write this lambda-term ⟨alice, bob⟩ and the type as Aalice ⊗ Bbob
By construction, these two functions are inverses of each other.

Dependent Specification
With our equality type, this is

∀x : bit, bob (alice x) =q x

But alice and bob are entangled
→ they only make sense with their quantum state.

Instead, the pair can be regarded as a witness for the type

∀X .(∀f : Aalice , ∀g : Bbob, (∀x : qbit, g(fx) =q x) → X) → X

22/24

Back to Teleportation

Let us spell it down A term of type

∀X .(∀f : Aalice , ∀g : Bbob, (∀x : qbit, g(fx) =q x) → X) → X

inputs a function of 1 argument, and feed it with
» a witness that g ◦ f is the identity
» for some f of type qbit ⊸ bit ⊗ bit
» and some g of type bit ⊗ bit ⊸ qbit

Our pair contains these elements.
The witness is implicit: the property is true by definition.
Said otherwise It is “logically” the same as

¬∀f : Aalice , ∀g : Bbob,¬(∀x : qbit, g(fx) =q x)

which is

¬¬∃f : Aalice , ∃g : Bbob, ∀x : qbit, g(fx) =q x

23/24

Limit of the approach

We would love the term λz .λz ′.⋆ to realize

∀x : qbit, ∀y : qbit, (x =q y) ⊸ P
1
2
tt (x) ⊸ P

1
2
tt (y)

This should come from that λz .λz ′.⋆ realizes the open formula

(x =q y) ⊸ Ptt(x , 1
2) ⊸ Ptt(y , 1

2)
I.e.

∀θ, ∀ξ, ∀U ∈ [|x =q y |]θ,ξ, ∀V ∈ [|Ptt(x , 1
2)|]θ,ξ, ⋆ ⊩ [|Ptt(y , 1

2)|]θ,ξ

» U and V are ⋆
» ξ(x) and ξ(y) are “just” term variables
» They refer to quantum registers in a quantum memory
» But each dependent relation uses its own quantum context!
» Elements of type qbit only refers to registers. . .

24/24

Conclusion

» Realizability: A versatile framework
» Novel typing construction for the quantum lambda-calculus
» Captures quantification over qubits!
» Still limited. . .
» But gives hints as of where to search

To be continued. . .

. . . and presented at the next IRN-LI seminar?

