Strong Call-by-Value and Multi Types

Beniamino Accattoli¹ Giulio Guerrieri² Maico Leberle¹

¹INRIA Saclay, France

²University of Sussex, UK

Kick-off meeting of the International Research Network – Logic & Interaction (IRN-LI) Rome, Italy, 13 May 2025

Outline

Introduction: Call-by-Value λ -Calculi

Our Contributions (for Strong CbV)

Table of Contents

Introduction: Call-by-Value λ -Calculi

A specific λ -calculus among a plethora of λ -calculi

The λ -calculus is the model of computation underlying

- functional programming languages (Haskell, OCaml, LISP, ...)
- proof assistants (Coq, Isabelle/Hol, Lean, Agda, ...).

A specific λ -calculus among a plethora of λ -calculi

The λ -calculus is the model of computation underlying

- functional programming languages (Haskell, OCaml, LISP, ...)
- proof assistants (Coq, Isabelle/Hol, Lean, Agda, ...).

Actually, there are many λ -calculi, depending on

- the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);
- computational feature the calculus aims to model (e.g., pure, non-determinism);
- the type system (e.g. untyped, simply typed, second order).

A specific λ -calculus among a plethora of λ -calculi

The λ -calculus is the model of computation underlying

- functional programming languages (Haskell, OCaml, LISP, ...)
- proof assistants (Coq, Isabelle/Hol, Lean, Agda, ...).

Actually, there are many λ -calculi, depending on

- the evaluation mechanism (e.g., call-by-name, call-by-value, call-by-need);
- computational feature the calculus aims to model (e.g., pure, non-determinism);
- the type system (e.g. untyped, simply typed, second order).

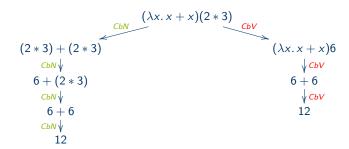
In this talk: pure untyped call-by-value λ -calculus (mainly).

Call-by-Name vs. Call-by-Value (for dummies)

- Call-by-Name (CbN): pass the argument to the calling function before evaluating it.
- Call-by-Value (CbV): pass the argument to the calling function after evaluating it.

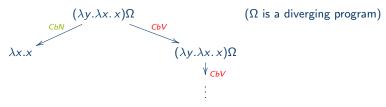
Call-by-Name vs. Call-by-Value (for dummies)

- Call-by-Name (CbN): pass the argument to the calling function before evaluating it.
- Call-by-Value (CbV): pass the argument to the calling function after evaluating it.



Call-by-Name vs. Call-by-Value (for dummies)

- Call-by-Name (CbN): pass the argument to the calling function before evaluating it.
- Call-by-Value (CbV): pass the argument to the calling function after evaluating it.



Summing up, CbV is eager, that is,

- ObV is smarter than CbN when the argument must be duplicated;
- ObV is sillier than CbN when the argument must be discarded.

Plotkin's Call-by-Value λ -calculus [Plo75]

Terms
$$s, t, u := v \mid tu$$
 Values $v := x \mid \lambda x.t$

CbV reduction $(\lambda x.t)v \rightarrow_{\beta_v} t\{v/x\}$ (restriction to β -rule)

It is closer to real implementation of most programming languages.

The semantics of CbV is completely different from standard (CbN) λ -calculus.

Plotkin's Call-by-Value λ -calculus [Plo75]

Terms
$$s, t, u := v \mid tu$$
 Values $v := x \mid \lambda x.t$

CbV reduction $(\lambda x.t)v \rightarrow_{\beta_v} t\{v/x\}$ (restriction to β -rule)

It is closer to real implementation of most programming languages.

The semantics of CbV is completely different from standard (CbN) λ -calculus.

Examples (with duplicator $\delta = \lambda z.zz$ and identity $I = \lambda z.z$):

Plotkin's Call-by-Value λ -calculus [Plo75]

Terms
$$s, t, u := v \mid tu$$
 Values $v := x \mid \lambda x.t$

CbV reduction $(\lambda x.t)v \rightarrow_{\beta_v} t\{v/x\}$ (restriction to β -rule)

It is closer to real implementation of most programming languages.

The semantics of CbV is completely different from standard (CbN) λ -calculus.

Examples (with duplicator $\delta = \lambda z.zz$ and identity $I = \lambda z.z$):

- $(\lambda x.\delta)(xx)\delta$ is β_v -normal but β -divergent!
- (λx.I)Ω is $β_v$ -divergent but β-normalizing!

A symptom that Plotkin's CbV is sick: Contextual equivalence

Def. Terms t,t' are contextually equivalent if they are observably indistinguishable, i.e., for every context C, $C\langle t \rangle \to_{\beta_v}^* \nu$ (for some value ν) iff $C\langle t' \rangle \to_{\beta_v}^* \nu'$ (for some value ν')

A symptom that Plotkin's CbV is sick: Contextual equivalence

Def. Terms t,t' are contextually equivalent if they are observably indistinguishable, i.e., for every context C, $C\langle t \rangle \to_{\beta_v}^* v$ (for some value v) iff $C\langle t' \rangle \to_{\beta_v}^* v'$ (for some value v')

Consider the terms (with $\delta := \lambda z.zz$ as usual)

$$\omega_1 := (\lambda x.\delta)(xx)\delta \qquad \omega_3 := \delta((\lambda x.\delta)(xx))$$

 ω_1 and ω_3 are β_v -normal but contextually equivalent to $\delta\delta$ (which is β_v -divergent)!

A symptom that Plotkin's CbV is sick: Contextual equivalence

Def. Terms t,t' are contextually equivalent if they are observably indistinguishable, i.e., for every context C, $C\langle t\rangle \to_{\beta_{\nu}}^* \nu$ (for some value ν) iff $C\langle t'\rangle \to_{\beta_{\nu}}^* \nu'$ (for some value ν')

Consider the terms (with $\delta := \lambda z.zz$ as usual)

$$\omega_1 := (\lambda x.\delta)(xx)\delta$$
 $\omega_3 := \delta((\lambda x.\delta)(xx))$

 ω_1 and ω_3 are β_v -normal but contextually equivalent to $\delta\delta$ (which is β_v -divergent)!

The "energy" (i.e. divergence) in ω_1 and ω_3 is only potential, in $\delta\delta$ is kinetic!

Why are ω_1 and ω_3 stuck? Why cannot we transform their potential energy in kinetic? It seems that in Plotkin's CbV λ -calculus something is missing...

[Ehr12] defined a non-idempotent intersection type system for Plotkin's CbV λ -calculus.

Linear types
$$L := * \mid M \multimap N$$
 Multi types $M, N := [L_1, ..., L_n]$ $n \ge 0$

Idea: $[L, L', L'] \approx L \wedge L' \wedge L' \neq L \wedge L'$ (commutative, associative, non-idempotent \wedge).

 \rightarrow A term t:[L,L',L'] can be used once as a data of type L, twice as a data of type L'.

 \rightarrow A term t:[] can only be discarded during evaluation.

[Ehr12] defined a non-idempotent intersection type system for Plotkin's CbV λ -calculus.

Linear types
$$L := * \mid M \multimap N$$
 Multi types $M, N := [L_1, \dots, L_n]$ $n \ge 0$

Idea: $[L, L', L'] \approx L \wedge L' \wedge L' \neq L \wedge L'$ (commutative, associative, non-idempotent \wedge).

- \rightarrow A term t:[L,L',L'] can be used once as a data of type L, twice as a data of type L'.
- \sim A term t:[] can only be discarded during evaluation.

Def: Environment Γ = function from variables to multi types s.t. $\{x \mid \Gamma(x) \neq []\}$ is finite.

$$\frac{}{x:[L]\vdash x:L} \overset{ax}{ax} \quad \frac{\Gamma,x:M\vdash t:N}{\Gamma\vdash \lambda x.t:M\multimap N} \lambda \quad \frac{\Gamma_1\vdash \textbf{v}:L_1 \quad \stackrel{n\geq 0}{\dots} \quad \Gamma_n\vdash \textbf{v}:L_n}{\Gamma_1+\dots+\Gamma_n\vdash \textbf{v}:[L_1,\dots,L_n]}! \quad \frac{\Gamma\vdash t:[M\multimap N] \quad \Delta\vdash s:M}{\Gamma\vdash \Delta\vdash ts:N} @$$

[Ehr12] defined a non-idempotent intersection type system for Plotkin's CbV λ -calculus.

Linear types
$$L := * \mid M \multimap N$$
 Multi types $M, N := [L_1, ..., L_n]$ $n \ge 0$

Idea: $[L, L', L'] \approx L \wedge L' \wedge L' \neq L \wedge L'$ (commutative, associative, non-idempotent \wedge).

- \rightarrow A term t:[L,L',L'] can be used once as a data of type L, twice as a data of type L'.
- \rightarrow A term t:[] can only be discarded during evaluation.

Def: Environment $\Gamma =$ function from variables to multi types s.t. $\{x \mid \Gamma(x) \neq []\}$ is finite.

$$\frac{}{x:[L]\vdash x:L} \overset{\text{ax}}{=} \frac{\Gamma,x:M\vdash t:N}{\Gamma\vdash \lambda x.t:M\multimap N} \lambda - \frac{\Gamma_1\vdash \textbf{v}:L_1 \overset{n\geq 0}{:=} \Gamma_n\vdash \textbf{v}:L_n}{\Gamma_1+\dots+\Gamma_n\vdash \textbf{v}:[L_1,\dots,L_n]}! - \frac{\Gamma\vdash t:[M\multimap N] \quad \Delta\vdash s:M}{\Gamma+\Delta\vdash ts:N} \textcircled{0}$$

Rmk: The constructor for multi types (rule !) can be used only by values!

In CbV, only values can be duplicated or erased.

Non-idempotent intersection types define a denotational model: relational semantics

$$[\![t]\!]_{\vec{x}} = \{(\Gamma, M) \mid \Gamma \vdash t : M \text{ is derivable}\}$$
 where $\vec{x} \subseteq \mathsf{fv}(t)$

Theorem (Subject reduction and expansion, [Ehr12]): If $t \to_{\beta_v} u$ then $[\![t]\!]_{\vec{x}} = [\![u]\!]_{\vec{x}}$.

Non-idempotent intersection types define a denotational model: relational semantics

$$[\![t]\!]_{\vec{x}} = \{(\Gamma, M) \mid \Gamma \vdash t : M \text{ is derivable}\}$$
 where $\vec{x} \subseteq \mathsf{fv}(t)$

Theorem (Subject reduction and expansion, [Ehr12]): If $t \to_{\beta_v} u$ then $[t]_{\vec{x}} = [u]_{\vec{x}}$.

Theorem (Correctness, [Ehr12]): If $[t]_{\vec{x}} \neq \emptyset$ then t is normalizing for "weak" β_v -reduction ("weak" = not reducing under λ 's).

Non-idempotent intersection types define a denotational model: relational semantics

$$[\![t]\!]_{\vec{x}} = \{(\Gamma, M) \mid \Gamma \vdash t : M \text{ is derivable}\}$$
 where $\vec{x} \subseteq \mathsf{fv}(t)$

Theorem (Subject reduction and expansion, [Ehr12]): If $t \to_{\beta_v} u$ then $[t]_{\vec{x}} = [u]_{\vec{x}}$.

Theorem (Correctness, [Ehr12]): If $[t]_{\vec{x}} \neq \emptyset$ then t is normalizing for "weak" β_v -reduction ("weak" = not reducing under λ 's).

The converse (completeness) fail!

$$\llbracket \omega_1 \rrbracket = \emptyset = \llbracket \omega_3 \rrbracket \quad (\text{and } \llbracket \delta \delta \rrbracket = \emptyset \text{ too!})$$

but ω_1 and ω_3 are β_v -normal, while $\delta\delta$ is β_v -divergent!

Non-idempotent intersection types define a denotational model: relational semantics

$$[\![t]\!]_{\vec{x}} = \{(\Gamma, M) \mid \Gamma \vdash t : M \text{ is derivable}\}$$
 where $\vec{x} \subseteq \mathsf{fv}(t)$

Theorem (Subject reduction and expansion, [Ehr12]): If $t \to_{\beta_v} u$ then $[t]_{\vec{x}} = [u]_{\vec{x}}$.

Theorem (Correctness, [Ehr12]): If $[t]_{\vec{x}} \neq \emptyset$ then t is normalizing for "weak" β_v -reduction ("weak" = not reducing under λ 's).

The converse (completeness) fail!

$$\llbracket \omega_1 \rrbracket = \emptyset = \llbracket \omega_3 \rrbracket \quad (\text{and } \llbracket \delta \delta \rrbracket = \emptyset \text{ too!})$$

but ω_1 and ω_3 are β_v -normal, while $\delta\delta$ is β_v -divergent!

Rmk: Not only in relational semantics but also in other denotational models of CbV!

Summing up: a mismatch between syntax and semantics

In Plotkin's CbV λ -calculus there is a mismatch between syntax and semantics.

There are terms, such as

$$\omega_1 := (\lambda x.\delta)(xx)\delta$$
 $\omega_3 := \delta((\lambda x.\delta)(xx))$

that are β_v -normal but their semantics is the same as $\delta\delta$, which is β_v -divergent!

• semantics: context equivalence, solvability, denotational models, ...

Summing up: a mismatch between syntax and semantics

In Plotkin's CbV λ -calculus there is a mismatch between syntax and semantics.

There are terms, such as

$$\omega_1 := (\lambda x.\delta)(xx)\delta$$
 $\omega_3 := \delta((\lambda x.\delta)(xx))$

that are β_v -normal but their semantics is the same as $\delta\delta$, which is β_v -divergent!

• semantics: context equivalence, solvability, denotational models, ...

Somehow, in Plotkin's CbV λ -calculus, β_{ν} -reduction is "not enough".

- Can we extend β_v so that ω_1 and ω_3 are divergent?
- But we want to keep a CbV discipline:

 $(\lambda x.I)(\delta \delta)$ is β_v -divergent (but β -normalizing)

First alternative CbV λ-calculus: Fireball calculus [PaoRon99, GreLer02]

Terms
$$s,t := v \mid s \; t$$
 Values $v := x \mid \lambda x.t$ Inert terms $i := x \mid i \; f$ Fireballs $f := i \mid v$ Reduction $(\lambda x.t) f \to_{\beta_f} t \{f/x\}$ (call-by-extended-value)

First alternative CbV λ -calculus: Fireball calculus [PaoRon99, GreLer02]

Terms
$$s,t := v \mid s t$$
 Values $v := x \mid \lambda x.t$ Inert terms $i := x \mid if$ Fireballs $f := i \mid v$ Reduction $(\lambda x.t)f \rightarrow_{\beta_c} t \{f/x\}$ (call-by-extended-value)

The fireball calculus (FC) extends β_v -reduction: ω_1 and ω_3 are β_v -normal but

$$\omega_1 = (\lambda x.\delta)(xx)\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \dots \qquad \omega_3 = \delta((\lambda x.\delta)(xx)) \rightarrow_{\beta_f} \delta\delta \rightarrow_{\delta_f} \delta\delta \rightarrow_{\delta_f} \delta\delta \rightarrow_{\delta_f} \delta\delta \rightarrow_{\delta_f} \delta\delta \rightarrow_{\delta_f} \delta\delta \rightarrow_{\delta_f} \delta\delta \rightarrow$$

First alternative CbV λ -calculus: Fireball calculus [PaoRon99, GreLer02]

Terms
$$s,t := v \mid s t$$
 Values $v := x \mid \lambda x.t$
Inert terms $i := x \mid if$ Fireballs $f := i \mid v$
Reduction $(\lambda x.t)f \rightarrow_{\beta_f} t \{f/x\}$ (call-by-extended-value)

The fireball calculus (FC) extends β_v -reduction: ω_1 and ω_3 are β_v -normal but

$$\omega_1 = (\lambda x.\delta)(xx)\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \ldots \qquad \omega_3 = \delta((\lambda x.\delta)(xx)) \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \ldots$$

Problem 1: No confluence: $(\lambda x.(\lambda z.z)(xx))\delta$

Problem 2: No subject reduction with multi types [Ehr12]: $(\lambda y.yy)(xx) \rightarrow_{\beta_f} (xx)(xx)$. No subject expansion with multi types [Ehr12]: $(\lambda y.z)(xx) \rightarrow_{\beta_f} z$.

First alternative CbV λ -calculus: Fireball calculus [PaoRon99, GreLer02]

Terms
$$s,t := v \mid s t$$
 Values $v := x \mid \lambda x.t$
Inert terms $i := x \mid if$ Fireballs $f := i \mid v$
Reduction $(\lambda x.t)f \rightarrow_{\beta_f} t \{f/x\}$ (call-by-extended-value)

The fireball calculus (FC) extends β_v -reduction: ω_1 and ω_3 are β_v -normal but

$$\omega_1 = (\lambda x.\delta)(xx)\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \ldots \qquad \omega_3 = \delta((\lambda x.\delta)(xx)) \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \delta\delta \rightarrow_{\beta_f} \ldots$$

Problem 1: No confluence: $(\lambda x.(\lambda z.z)(xx))\delta$

Problem 2: No subject reduction with multi types [Ehr12]: $(\lambda y.yy)(xx) \rightarrow_{\beta_f} (xx)(xx)$. No subject expansion with multi types [Ehr12]: $(\lambda y.z)(xx) \rightarrow_{\beta_f} z$.

Solution to Problems 1–2: Just modify the syntax of the FC (a bit tricky, omitted).

Second alternative CbV λ -calculus: Value Substitution Calculus [AccPao12]

Terms:
$$s, t := v \mid ts \mid t[s/x]$$
 Values: $v := x \mid \lambda x.t$

Substitution contexts: $L := [t_1/x_1] \dots [t_n/x_n]$

Reductions:
$$(\lambda x.t)Ls \rightarrow_m t[s/x]L$$
 $t[vL/x] \rightarrow_e t\{v/x\}L$

Second alternative CbV λ -calculus: Value Substitution Calculus [AccPao12]

Terms: $s, t := v \mid ts \mid t[s/x]$ Values: $v := x \mid \lambda x.t$ Substitution contexts: $L := [t_1/x_1] \dots [t_n/x_n]$

Reductions: $(\lambda x.t)Ls \rightarrow_m t[s/x]L$ $t[vL/x] \rightarrow_e t\{v/x\}L$

Q β_{v} -reduction can be simulated in the Value Substitution Calculus (VSC).

$$(\lambda x.t)v \rightarrow_m t[v/x] \rightarrow_e t\{v/x\}$$

VSC extends β_{V} -reduction: ω_{1} and ω_{3} are β_{V} -normal but

$$\omega_{1} = (\lambda x.\delta)(xx)\delta \rightarrow_{m} \delta[xx/x]\delta \rightarrow_{m} (zz)[\delta/z][xx/x] \rightarrow_{e} \delta\delta[xx/x] \rightarrow \dots$$

$$\omega_{3} = \delta((\lambda x.\delta)(xx)) \rightarrow_{m} \delta(\delta[xx/x]) \rightarrow_{m} (zz)[\delta[xx/x]/z] \rightarrow_{e} \delta\delta[xx/x] \rightarrow \dots$$

Second alternative CbV λ -calculus: Value Substitution Calculus [AccPao12]

Terms: $s,t := v \mid ts \mid t[s/x]$ Values: $v := x \mid \lambda x.t$ Substitution contexts: $L := [t_1/x_1] \dots [t_n/x_n]$

Reductions: $(\lambda x.t)Ls \rightarrow_m t[s/x]L$ $t[vL/x] \rightarrow_e t\{v/x\}L$

 \bullet β_v -reduction can be simulated in the Value Substitution Calculus (VSC).

$$(\lambda x.t)v \rightarrow_m t[v/x] \rightarrow_e t\{v/x\}$$

Q VSC extends β_v -reduction: ω_1 and ω_3 are β_v -normal but

$$\omega_{1} = (\lambda x.\delta)(xx)\delta \to_{m} \delta[xx/x]\delta \to_{m} (zz)[\delta/z][xx/x] \to_{e} \delta\delta[xx/x] \to \dots$$

$$\omega_{3} = \delta((\lambda x.\delta)(xx)) \to_{m} \delta(\delta[xx/x]) \to_{m} (zz)[\delta[xx/x]/z] \to_{e} \delta\delta[xx/x] \to \dots$$

Theorem (Subject reduction and expansion, [AccGue18]): If $t \to_{VSC} u$ then $[\![t]\!]_{\vec{x}} = [\![u]\!]_{\vec{x}}$.

$$\frac{\Gamma, x : M \vdash t : N \quad \Delta \vdash s : M}{\Gamma + \Delta \vdash t[s/x] : N} ES$$

Termination equivalence: weak but not strong

Consider weak reduction (i.e. not firing redexes under λ 's): perfect match!

Prop (Diamond) Both *VSC*-reduction and β_f -reduction are diamond.

Thm (Termination equivalence [AccGue16]): t is VSC-normalizing iff t is β_f -normalizing.

Thm (Correctness & completeness [AccGue18]): t is VSC-normalizing iff $[t]_{\vec{x}} \neq \emptyset$.

Termination equivalence: weak but not strong

Consider weak reduction (i.e. not firing redexes under λ 's): perfect match!

Prop (Diamond) Both *VSC*-reduction and β_f -reduction are diamond.

Thm (Termination equivalence [AccGue16]): t is VSC-normalizing iff t is β_f -normalizing.

Thm (Correctness & completeness [AccGue18]): t is VSC-normalizing iff $[t]_{\vec{x}} \neq \emptyset$.

With strong reduction (i.e. firing redexes everywhere): A mess! (and the diamond fails)

Problem 1: VSC-reduction and β_f -reduction have different notions of termination.

Problem 2: Characterization of VSC-normalization or β_f -normalization with multi types?

Table of Contents

Our Contributions (for Strong CbV)

The external strategy

In CbN, the leftmost-outermost strategy (LO) fires the leftmost-outermost β -redex.

Thm (Normalization [CurFey58]): If t is β -normalizing then LO from t terminates.

The external strategy

In CbN, the leftmost-outermost strategy (LO) fires the leftmost-outermost β -redex.

Thm (Normalization [CurFey58]): If t is β -normalizing then LO from t terminates.

What is the analog for Strong CbV? Things are a bit trickier!

Def: The external strategy (roughly) fires a redex everywhere, except under λ 's in a *irrelevant* position for normalization (e.g. an applied λ or a λ on the right of another λ).

Rmk: The external strategy \rightarrow_x is not deterministic but diamond.

Ex: If $I = \lambda z.z$, \rightarrow_x cannot fire the redex II in $(\lambda x.x(II))v$. But $\lambda x.\delta\delta \rightarrow_x \lambda x.\delta\delta \rightarrow_x \dots$

The external strategy

In CbN, the leftmost-outermost strategy (LO) fires the leftmost-outermost β -redex.

Thm (Normalization [CurFey58]): If t is β -normalizing then LO from t terminates.

What is the analog for Strong CbV? Things are a bit trickier!

Def: The external strategy (roughly) fires a redex everywhere, except under λ 's in a *irrelevant* position for normalization (e.g. an applied λ or a λ on the right of another λ).

Rmk: The external strategy \rightarrow_x is not deterministic but diamond.

Ex: If $I = \lambda z.z$, \rightarrow_x cannot fire the redex II in $(\lambda x.x(II))v$. But $\lambda x.\delta\delta \rightarrow_x \lambda x.\delta\delta \rightarrow_x \dots$

Rmk: The external strategy behaves differently in VSC and FC.

External in FC: $t = (\lambda x.I)(y(\lambda z.\delta \delta)) \rightarrow_{x\beta_f} I$ (which is normal)

External in VSC: $t \to_{xVSC} I[y(\lambda z.\delta \delta)/x] \to_{xVSC}^* I[y(\lambda z.\delta \delta)/x] \to_{xVSC} \cdots$

More about the external strategy

Question: Why is the external strategy important?

[AccConSac21,BieChaDra20] proved that it is a reasonable cost model for Strong CbV.

More about the external strategy

Question: Why is the external strategy important?

[AccConSac21,BieChaDra20] proved that it is a reasonable cost model for Strong CbV.

Def: In VSC, the external reduction \rightarrow_{xVSC} is formally defined as follows:

 $r := x \mid rt \mid r[r'/x]$ Rigid terms:

Rigid contexts: $R := rX \mid Rt \mid R[r/x] \mid r[R/x]$

External contexts: $X := \langle \cdot \rangle \mid \lambda x. X \mid t[R/x] \mid X[r/x] \mid R$

 \rightarrow_{xVSC} is the closure under external contexts of weak (i.e. not under λ) reduction in VSC.

IRN-LI

More about the external strategy

Question: Why is the external strategy important?

[AccConSac21,BieChaDra20] proved that it is a reasonable cost model for Strong CbV.

Def: In VSC, the external reduction \rightarrow_{xVSC} is formally defined as follows:

Rigid terms: $r := x \mid rt \mid r[r'/x]$

Rigid contexts: $R := rX \mid Rt \mid R[r/x] \mid r[R/x]$

External contexts: $X := \langle \cdot \rangle \mid \lambda x.X \mid t[R/x] \mid X[r/x] \mid R$

 \rightarrow_{xVSC} is the closure under external contexts of weak (i.e. not under λ) reduction in VSC.

Rmk: In VSC, t is normal for \rightarrow_{xVSC} iff t is normal for \rightarrow_{VSC} .

Rmk: Rigid terms are not λ 's, have a free head variable, their unfolding is still rigid.

Multi types for Strong CbV

Goal: We want to prove that the external strategy is normalizing for Strong CbV.

Questions: For which Strong CbV? And how to prove it?

IRN-LI

Multi types for Strong CbV

Goal: We want to prove that the external strategy is normalizing for Strong CbV.

Questions: For which Strong CbV? And how to prove it?

Idea: Let's use multi types, the same type system as in [Ehr12]! But it's trickier!

Ex: $\lambda x.\delta \delta$ is external divergent but typable with [] (use the rule! with no premises).

Ex: $y\lambda x.\delta\delta$ is external divergent but typable with $y:[[] \rightarrow M] \vdash y\lambda x.\delta\delta:M$, for some M.

Multi types for Strong CbV

Goal: We want to prove that the external strategy is normalizing for Strong CbV.

Questions: For which Strong CbV? And how to prove it?

Idea: Let's use multi types, the same type system as in [Ehr12]! But it's trickier!

Ex: $\lambda x.\delta \delta$ is external divergent but typable with [] (use the rule! with no premises).

Ex: $y\lambda x.\delta\delta$ is external divergent but typable with $y:[[] \multimap M] \vdash y\lambda x.\delta\delta:M$, for some M.

Idea: Let's forbid [] on the right of \vdash and on the left of arrow types in the environment

- \rightarrow no [] in the positive positions on the right of \vdash (right shrinking types);
- \rightarrow dually, no [] in the negative positions on the left of \vdash (left shrinking types).

Shrinking types, formally

We take the same type system as [Ehr12], we just restrict the types.

Right multi shrink.
$$M^r := [L_1^r, \dots, L_n^r] \ (n \ge 1)$$
 Right linear shrink. $L^r := * \mid M^\ell \multimap M^r$
Left multi shrink. $M^\ell := [L_1^\ell, \dots, L_n^\ell] \ (n \ge 0)$ Left linear shrink. $L^\ell := * \mid M^r \multimap M^\ell$

Shrinking types, formally

We take the same type system as [Ehr12], we just restrict the types.

Right multi shrink.
$$M^r := [L_1^r, \dots, L_n^r] \ (n \ge 1)$$
 Right linear shrink. $L^r := * \mid M^\ell \multimap M^r$ Left multi shrink. $M^\ell := [L_1^\ell, \dots, L_n^\ell] \ (n \ge 0)$ Left linear shrink. $L^\ell := * \mid M^r \multimap M^\ell$

Def: An environment $x_1: M_1, \ldots, x_n: M_n$ is left shrinking if all M_i 's are left shrinking. A typing $(\Gamma; M)$ is shrinking if Γ is left shrinking and M is right shrinking.

Shrinking types, formally

We take the same type system as [Ehr12], we just restrict the types.

Right multi shrink.
$$M' ::= [L_1', \dots, L_n'] \ (n \ge 1)$$
 Right linear shrink. $L' ::= * \mid M^\ell \multimap M'$
Left multi shrink. $M^\ell ::= [L_1^\ell, \dots, L_n^\ell] \ (n \ge 0)$ Left linear shrink. $L^\ell ::= * \mid M' \multimap M^\ell$

Def: An environment $x_1: M_1, \ldots, x_n: M_n$ is left shrinking if all M_i 's are left shrinking. A typing $(\Gamma; M)$ is shrinking if Γ is left shrinking and M is right shrinking.

Lemma (Shrinking spread) Let $\Pi \triangleright \Gamma \vdash r : M$, r rigid. If Γ is left shrinking then so is M.

The key results 1: Shrinking typability ⇒ external normalization

Thm (Quantitative subject reduction) Let $\Pi \triangleright \Gamma \vdash t : M$ a derivation where (Γ, M) is shrinking. If $t \rightarrow_{xVSC} t'$ then there is a derivation $\Pi' \triangleright \Gamma \vdash t' : M$ with $|\Pi| > |\Pi'|$.

The key results 1: Shrinking typability ⇒ external normalization

Thm (Quantitative subject reduction) Let $\Pi \triangleright \Gamma \vdash t : M$ a derivation where (Γ, M) is shrinking. If $t \rightarrow_{xVSC} t'$ then there is a derivation $\Pi' \triangleright \Gamma \vdash t' : M$ with $|\Pi| > |\Pi'|$.

Rmk: Dropping shrinkingness, the quantitative aspect is false! $\lambda x.\delta\delta \to_{xVSC} \lambda x.(zz)[\delta/z]$ but both terms are only typable with [] using the ! rule with no premises $\leadsto |\Pi| = |\Pi'|$.

The key results 1: Shrinking typability \Rightarrow external normalization

Thm (Quantitative subject reduction) Let $\Pi \triangleright \Gamma \vdash t : M$ a derivation where (Γ, M) is shrinking. If $t \to_{xVSC} t'$ then there is a derivation $\Pi' \triangleright \Gamma \vdash t' : M$ with $|\Pi| > |\Pi'|$.

Rmk: Dropping shrinkingness, the quantitative aspect is false! $\lambda x.\delta \delta \to_{xVSC} \lambda x.(zz)[\delta/z]$ but both terms are only typable with [] using the ! rule with no premises $\rightsquigarrow |\Pi| = |\Pi'|$.

Rmk: Replacing \to_{xVSC} with \to_{VSC} , quantitativity fails! $I(\lambda x.II) \stackrel{\not \to}{\to}_{VSC}^{xVSC} I(\lambda x.z[I/z])$ and $\Pi = \frac{\frac{\sum_{i=y}^{y} \left[\left[\frac{1}{y} \right]^{i}}{\left[\frac{\lambda y \cdot y : \left[\left[\right] \rightarrow \left[\right]}{\left[\right]} \right]^{i}} \frac{\lambda x \cdot H : \left[\right]}{\left[\frac{\lambda x \cdot H : \left[\right]}{0} \right]} \text{ but any } \Pi' \triangleright \vdash I(\lambda x \cdot z[I/z]) : \left[\right] \text{ is s.t. } |\Pi'| \ge |\Pi|.$

Thm (Shrinking correctness) Let $\Pi \triangleright \Gamma \vdash t : M$ a derivation where (Γ, M) is shrinking. Then $t \to_{xVSC}^* u$ where u is VSC-normal.

The key results 2: External normalization ⇒ shrinking typability

Lemma: Every VSC-normal form is typable with a shrinking typing.

Thm (Shrinking completeness) Let $t \to_{xVSC}^* u$ where u is VSC-normal. Then $\Pi \rhd \Gamma \vdash t : M$ a derivation where $(\Gamma; M)$ is shrinking.

The key results 2: External normalization ⇒ shrinking typability

Lemma: Every VSC-normal form is typable with a shrinking typing.

Thm (Shrinking completeness) Let $t \to_{xVSC}^* u$ where u is VSC-normal. Then $\Pi \triangleright \Gamma \vdash t : M$ a derivation where $(\Gamma; M)$ is shrinking.

Cor: If *t* is VSC-normalizing then *t* is VSC-normalizing with the external strategy.

The key results 2: External normalization \Rightarrow shrinking typability

Lemma: Every VSC-normal form is typable with a shrinking typing.

Thm (Shrinking completeness) Let $t \to_{xVSC}^* u$ where u is VSC-normal. Then $\Pi \triangleright \Gamma \vdash t : M$ a derivation where $(\Gamma; M)$ is shrinking.

Cor: If t is VSC-normalizing then t is VSC-normalizing with the external strategy.

Shrinking types define a denotational model: shrinking relational semantics:

$$\llbracket t \rrbracket_{\vec{x}}^{\sf shr} = \{ (\Gamma, M) \text{ shrinking } | \Gamma \vdash t : M \text{ is derivable} \}$$
 where $\vec{x} \subseteq \mathsf{fv}(t)$

which is adequate: $[t]_{\vec{x}}^{shr} \neq \emptyset$ iff t is VSC-normalizing.

The key results 2: External normalization \Rightarrow shrinking typability

Lemma: Every VSC-normal form is typable with a shrinking typing.

Thm (Shrinking completeness) Let $t \to_{*VSC}^* u$ where u is VSC-normal. Then $\Pi \triangleright \Gamma \vdash t : M$ a derivation where $(\Gamma; M)$ is shrinking.

Cor: If t is VSC-normalizing then t is VSC-normalizing with the external strategy.

Shrinking types define a denotational model: shrinking relational semantics:

$$[\![t]\!]_{\vec{x}}^{\sf shr} = \{(\Gamma, M) \; {\sf shrinking} \; | \; \Gamma \vdash t : M \; {\sf is \; derivable}\} \qquad {\sf where} \; \vec{x} \subseteq {\sf fv}(t)$$

which is adequate: $[t]_{\vec{x}}^{shr} \neq \emptyset$ iff t is VSC-normalizing.

Rmk: Shrinking completeness fails in FC, see counterexample on p. 15: $(\lambda x.I)(y(\lambda z.\delta\delta))$. → The shrinking relational semantics suggests that VSC is the "right" Strong CbV.

Thank you!

Questions?

