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Introduction

Proof nets: graphical, more canonical representation of LL proofs

Proof trees

Graphs

Proof
structures

Proof nets
←−

Sequentialization

−→
Desequentialization

In (unit-free) MLL:
multiple correctness criteria,
proofs of sequentialization

Still sequentialization is not
considered easy.

This talk: easy proof(s) of sequentialization by splitting vertices, from a
general theorem of graph theory
−→ follows a line of work from Rétoré [Ret03] and Nguyễn [Ngu20]
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Outline

▶ Multiplicative Linear Logic & Sequentialization
Sequent Calculus & Proof Nets
Sequentialization by splitting vertices

▶ Simple proof of (a generalized) Yeo’s theorem
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Unit-free Multiplicative Linear Logic with Mix

Formulas
A ::= X | X⊥ | A⊗ A | A ` A

Orthogonality

(X⊥)⊥ = X (A⊗ B)⊥ = A⊥ ` B⊥ (A ` B)⊥ = A⊥ ⊗ B⊥

Rules

(ax)
⊢ A⊥,A

⊢ A, Γ ⊢ B,∆
(⊗)

⊢ A⊗ B, Γ,∆

⊢ A,B, Γ
(`)

⊢ A ` B, Γ

(mix0)
⊢

⊢ Γ ⊢ ∆
(mix2)

⊢ Γ,∆
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Example of proof structure by desequentialization
(ax)

⊢ A⊥,A
(ax)

⊢ B,B⊥
(⊗)

⊢ A⊗ B,A⊥,B⊥
(ax)

⊢ C ,C⊥
(mix2)

⊢ A⊗ B,A⊥,B⊥,C ,C⊥
(`)

⊢ A⊗ B,A⊥ ` B⊥,C ,C⊥
(`)

⊢ A⊗ B, (A⊥ ` B⊥) ` C ,C⊥

ax ax

⊗ ax`

`

A A⊥ B B⊥

A⊗ B
C C⊥

A⊥ ` B⊥

(A⊥ ` B⊥) ` C
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Proof structure

Definition
Partial multigraph with labels on vertices → ax /⊗ / `

on edges → formula

ax
AA⊥

⊗
BA

A⊗ B

`
BA

A ` B

ax ax

⊗ ax`

`

A A⊥ B B⊥

A⊗ B
C C⊥

A⊥ ` B⊥

(A⊥ ` B⊥) ` C
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Correctness

Danos-Regnier Correctness Criterion
Cusp: a ` and its two premises
Switching path/cycle: does not contain any cusp
A proof structure is correct if it does not contain any switching cycle

= if every cycle has a cusp

ax

⊗

AA⊥

A⊥ ⊗ A

ax

⊗

ax ax

⊗ ax`

`

A A⊥ B B⊥

A⊗ B
C C⊥

A⊥ ` B⊥

(A⊥ ` B⊥) ` C

ax ax

⊗

`
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Destination Sequentialization

Sequentialization
Given a correct proof structure, there is a proof desequentializing to it.

How to prove it? One usual way: by finding a splitting vertex

Splitting terminal [Gir87]

` no vertex below
⊗ no vertex below & not in a cycle

`
A B

A ` B

Γ

R1

⇝
π1

⊢ A,B, Γ
(`)

⊢ A` B, Γ

⊗
A B

A⊗ B

Γ ∆

R1 R2

X

⇝
π1

⊢ A, Γ
π2

⊢ B,∆
(⊗)

⊢ A⊗ B, Γ,∆

Splitting ` (aka section) [DR89]

its conclusion edge is not in a cycle

`
A B

A ` B

Γ

R1

R2

X ⇝

π1

⊢ A,B, Γ
(`)

⊢ A` B, Γ
π2
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Sequentialization & Yeo’s Theorem
Sequentialization

Proof nets
ax

ax

` ⊗
ax

ax

XX⊥

X⊥ ` X

Y

(X⊥ ` X )⊗ Y

Y⊥

Cusp: a ` and its two premises

no switching (= cusp-free) cycle
=⇒ ∃ splitting vertex

= is a cusp of all its cycles

`
A B

A ` B

⊗
A B

A⊗ B

`
A B

A ` B

Yeo’s Theorem
Edge-colored graphs

Cusp: a vertex and two of its edges
of the same color

near it

no alternating (= cusp-free) cycle
=⇒ ∃ splitting vertex

in some set

= is a cusp of all its cycles

v

Encoding
premises of a ` = same color

all other edges of different colors
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Strict Partial Order on Vertices

× Colors

Main idea: follow a path evidence of progression = a strict partial order �
Goal: a �-maximal vertex is splitting

Definition

(

v

, α)

�

(

u

, β)

means there is a path p such that:
(1) p is a simple open

cusp-free

path from v to u

with starting color not
α and with ending color β

(2) there is no simple open cusp-free path q starting from u with color not
β and going back on p

Proof: � is a strict partial order.
Irreflexivity: by definition.
Transitivity: if (v , α)

p
� (u, β)

q
� (w , γ) then (v , α)

p·q
� (w , γ).

(1)
√

(2)
√ v u

w

p

q

q

r
r
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(1) p is a simple open cusp-free path from v to u with starting color not

α and with ending color β
(2) there is no simple open cusp-free path q starting from u with color not

β and going back on p

Proof: � is a strict partial order.
Irreflexivity: by definition.
Transitivity: if (v , α)

p
� (u, β)

q
� (w , γ) then (v , α)

p·q
� (w , γ).

(1) ?
(2) ?

v u

w

p

q

q

r
r

11 / 15



Strict Partial Order on Vertices × Colors

Main idea: follow a path evidence of progression = a strict partial order �
Goal: a �-maximal vertex is splitting

Definition
(v , α)� (u, β) means there is a path p such that:
(1) p is a simple open cusp-free path from v to u with starting color not

α and with ending color β
(2) there is no simple open cusp-free path q starting from u with color not

β and going back on p

Proof: � is a strict partial order.
Irreflexivity: by definition.
Transitivity: if (v , α)

p
� (u, β)

q
� (w , γ) then (v , α)

p·q
� (w , γ).

(1)
√

(2) ?
v u w

p

q

q

r

r

11 / 15



Strict Partial Order on Vertices × Colors

Main idea: follow a path evidence of progression = a strict partial order �
Goal: a �-maximal vertex is splitting

Definition
(v , α)� (u, β) means there is a path p such that:
(1) p is a simple open cusp-free path from v to u with starting color not

α and with ending color β
(2) there is no simple open cusp-free path q starting from u with color not

β and going back on p

Proof: � is a strict partial order.
Irreflexivity: by definition.
Transitivity: if (v , α)

p
� (u, β)

q
� (w , γ) then (v , α)

p·q
� (w , γ).

(1)
√

(2)
√ v u w

p

q

q

r

r
11 / 15



Key (and sole) intermediate lemma
Cusp Minimization
Let ω be a cycle with a cusp at u of color β, but no cusp at v . If there is a
simple open cusp-free path q starting from u with color not β and going
back on ω, then either there exists a cusp-free cycle or there is a cycle ω′

with no cusp at v and strictly less cusps than ω.

Proof:

v

u w

ω

β β

q

ω ′

c
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�-maximal is splitting

Lemma
Assume v is not splitting. For any color α, there exists (u, β) such that
(v , α)� (u, β). Furthermore, there is a cusp at u of color β.

Proof.
v not splitting =⇒ cycle ω with no cusp at v

w.l.o.g. starting color of ω is not α
w.l.o.g. ω has a minimal number of cusps

No cusp-free cycle: set u the first cusp of ω,
cusp of color β
(v , α)

p
� (u, β)? Yes, by Cusp Minimization.
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Generalized Yeo’s Theorem

Generalized Yeo’s Theorem
In a graph G with an half-edge coloring, pose P a set of vertex-color pairs
containing at least all (v , α) such that there is a cusp at v with half-edges
of color α. If G has no cusp-free cycle, the vertex of any �-maximal
element of P is splitting.

Proof.
A non-splitting vertex is smaller than some vertex in P .

Back to (colored) proof nets: cusp = `

We get a vertex:
Splitting with P all vertex-color pairs

Splitting ` or ⊗ with P all `- and ⊗-color pairs
Splitting ` with P all `-color pairs
Splitting terminal with P := {(v , α) |

v is a ` or ⊗ and α is the color of one of its premises}

ax

` ⊗
ax
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Conclusion

Sequentialization
Given a correct proof structure, there is a proof desequentializing to it.

Sequentialization by splitting vertices from Yeo’s theorem by only
defining a coloring
No other encoding → can translate our simple proof of Yeo as one of
sequentialization (i.e. just redefine what a cusp is)
Other theorems in graph theory, known to be equivalent to Yeo’s
theorem, can be proved easily this way – only by defining a coloring
Can be extended to proof nets with additives [HG05]

Proof simple enough to be formalized in

15 / 15



Thank you!

ax

` ⊗
ax
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Interest of the parameter P

Vertex × Colors

non splitting vertices

CuspsCusps

P

(maximum elements for � are on top)
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Sequentialization and Graph Theory

Proof Nets Graph Theory

all equivalent using encodings [Sze04]all equivalent using encodings [Sze04]Sequentialization [Gir87]

MLL Proof nets are
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proofs.

Sequentialization [HG05]

MALL Proof nets are
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proofs.
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On perfect matchings

Grossman &
Häggkvist [GH83]

Seymour &
Giles [Sey78]

Shoesmith &
Smiley [SS79]

Yeo [Yeo97]

A graph with no alternating
cycle has a splitting vertex:

Yeo with local coloring

(and a parameter)

Yeo with cycles
Allows some

alternating cycles

[Ngu20]

encoding

encoding
w/o

encoding
all

w/o
encoding

w/o encoding
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Finding a splitting ` on an example

ax

`

ax

`

⊗

`

ax

`

ax

`

ax

`1

`2

`3

`4

15 / 15



Finding a splitting ` on an example

ax

`

ax

`

⊗

`

ax

`

ax

`

ax

`1

`2

`3

`4

15 / 15



Finding a splitting ` on an example

ax

`

ax

`

⊗

`

ax

`

ax

`

ax

`1

`2

`3

`4

15 / 15



Finding a splitting ` on an example

ax

`

ax

`

⊗

`

ax

`

ax

`

ax

`1

`2

`3

`4

15 / 15



Finding a splitting ` on an example

ax

`

ax

`

⊗

`

ax

`

ax

`

ax

`1

`2

`3

`4

15 / 15



Finding a splitting ` on an example

ax

`

ax

`

⊗

`

ax

`

ax

`

ax

`1

`2

`3

`4

15 / 15



Finding a splitting ` on an example

ax

`

ax

`

⊗

`

ax

`

ax

`

ax

`1

`2

`3

`4

15 / 15



Finding a splitting ` on an example

ax

`

ax

`

⊗

`

ax

`

ax

`

ax

`1

`2

`3

`4

15 / 15



Finding a splitting ` on an example

ax

`

ax

`

⊗

`

ax

`

ax

`

ax

`1

`2

`3

`4

15 / 15


	Introduction
	Multiplicative Linear Logic & Sequentialization
	Sequent Calculus & Proof Nets
	Sequentialization by splitting vertices

	Simple proof of (a generalized) Yeo's theorem
	Conclusion
	References
	Secrets

