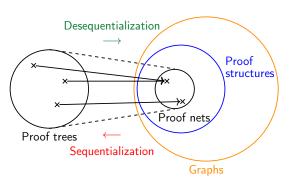
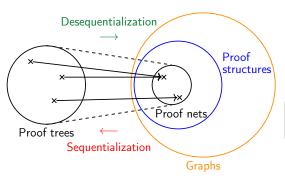
Yeo's Theorem for Locally Colored Graphs: the Path to Sequentialization in Linear Logic

Rémi Di Guardia, Olivier Laurent, Lorenzo Tortora de Falco, Lionel Vaux Auclair

IRIF (CNRS, Université Paris Cité), France

Rome, 12 May 2025

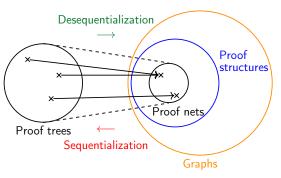



Introduction

Proof nets: graphical, more canonical representation of LL proofs

Introduction

Proof nets: graphical, more canonical representation of LL proofs



In (unit-free) MLL: multiple correctness criteria, proofs of sequentialization

Still sequentialization is not considered easy.

Introduction

Proof nets: graphical, more canonical representation of LL proofs

In (unit-free) MLL: multiple correctness criteria, proofs of sequentialization

Still sequentialization is not considered easy.

<u>This talk:</u> easy proof(s) of sequentialization by **splitting** vertices, from a general theorem of **graph theory**

 \longrightarrow follows a line of work from Rétoré [Ret03] and Nguyễn [Ngu20]

Outline

- ► Multiplicative Linear Logic & Sequentialization
 - Sequent Calculus & Proof Nets
 - Sequentialization by splitting vertices

► Simple proof of (a generalized) Yeo's theorem

Unit-free Multiplicative Linear Logic with Mix

Formulas

$$A ::= X \mid X^{\perp} \mid A \otimes A \mid A \otimes A$$

Orthogonality

$$(X^{\perp})^{\perp} = X$$
 $(A \otimes B)^{\perp} = A^{\perp} \otimes B^{\perp}$ $(A \otimes B)^{\perp} = A^{\perp} \otimes B^{\perp}$

Rules

$$\frac{}{\vdash A^{\perp}, A} \text{ (ax)} \qquad \frac{\vdash A, \Gamma \quad \vdash B, \Delta}{\vdash A \otimes B, \Gamma, \Delta} \text{ (\otimes)} \qquad \frac{\vdash A, B, \Gamma}{\vdash A \otimes B, \Gamma} \text{ ($\%$)}$$

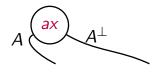
$$\frac{-}{\vdash} (mix_0) \qquad \frac{\vdash \Gamma \quad \vdash \Delta}{\vdash \Gamma, \Delta} (mix_2)$$

Unit-free Multiplicative Linear Logic with Mix

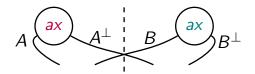
Formulas

$$A ::= X \mid X^{\perp} \mid A \otimes A \mid A \otimes A$$

Orthogonality

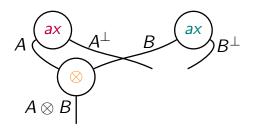

$$(X^{\perp})^{\perp} = X$$
 $(A \otimes B)^{\perp} = A^{\perp} \otimes B^{\perp}$ $(A \otimes B)^{\perp} = A^{\perp} \otimes B^{\perp}$

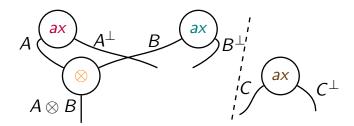
Rules


$$\frac{- (mix_0)}{\vdash \Gamma. \Delta} (mix_2)$$

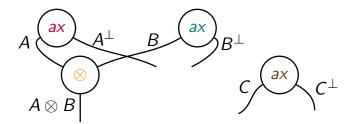
$$\frac{\overline{\vdash A^{\perp}, A} \xrightarrow{(ax)} \overline{\vdash B, B^{\perp}} \xrightarrow{(ax)} (\otimes)}{\underline{\vdash A \otimes B, A^{\perp}, B^{\perp}} \xrightarrow{(\otimes)} \overline{\vdash C, C^{\perp}} \xrightarrow{(mix_2)}} \frac{(Ax)}{(mix_2)} \frac{(Ax)}{(Ax)} \xrightarrow{(Ax)} \overline{A \otimes B, A^{\perp}, B^{\perp}, C, C^{\perp}} \xrightarrow{(\aleph)} (Ax)}{\underline{\vdash A \otimes B, A^{\perp} & \Re B^{\perp}, C, C^{\perp}} \xrightarrow{(\aleph)}} (Ax)$$

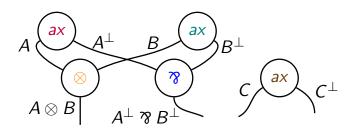
$$\frac{\vdash A^{\perp}, A}{\vdash A \otimes B, A^{\perp}, B^{\perp}} \stackrel{(ax)}{\otimes} \frac{\vdash A \otimes B, A^{\perp}, B^{\perp}}{\vdash A \otimes B, A^{\perp}, B^{\perp}, C, C^{\perp}} \stackrel{(ax)}{\longleftarrow} \frac{\vdash A \otimes B, A^{\perp}, B^{\perp}, C, C^{\perp}}{\vdash A \otimes B, (A^{\perp} \otimes B^{\perp}) \otimes C, C^{\perp}} \stackrel{(\%)}{\longleftarrow} \frac{\vdash A \otimes B, (A^{\perp} \otimes B^{\perp}) \otimes C, C^{\perp}}{\vdash A \otimes B, (A^{\perp} \otimes B^{\perp}) \otimes C, C^{\perp}}$$

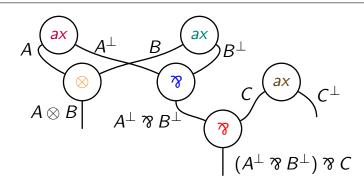

$$\frac{\vdash A^{\perp}, A}{\vdash A \otimes B, A^{\perp}, B^{\perp}} \overset{(ax)}{(\otimes)} \frac{\vdash A, B^{\perp}}{\vdash A \otimes B, A^{\perp}, B^{\perp}} \overset{(ax)}{(\otimes)} \frac{\vdash C, C^{\perp}}{\vdash A \otimes B, A^{\perp}, B^{\perp}, C, C^{\perp}} \overset{(ax)}{(mix_{2})} \frac{\vdash A \otimes B, A^{\perp} \otimes B^{\perp}, C, C^{\perp}}{\vdash A \otimes B, (A^{\perp} \otimes B^{\perp}) \otimes C, C^{\perp}} \overset{(\%)}{(\%)}$$


$$\frac{ \vdash A^{\perp}, A \xrightarrow{(ax)} \frac{}{\vdash B, B^{\perp}} \xrightarrow{(ax)} }{ \vdash A \otimes B, A^{\perp}, B^{\perp} \xrightarrow{(8)} \frac{}{\vdash C, C^{\perp}} \xrightarrow{(mix_2)} }$$

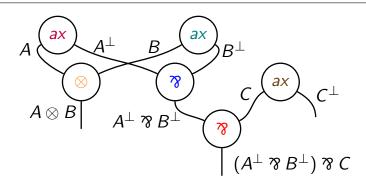
$$\frac{ \vdash A \otimes B, A^{\perp}, B^{\perp}, C, C^{\perp}}{\vdash A \otimes B, A^{\perp} \nearrow B^{\perp}, C, C^{\perp}} \xrightarrow{(\%)}$$


$$\vdash A \otimes B, (A^{\perp} \nearrow B^{\perp}) \nearrow C, C^{\perp} \xrightarrow{(\%)}$$


$$\frac{\overline{\vdash A^{\perp}, A}}{\vdash A \otimes B, A^{\perp}, B^{\perp}} \xrightarrow{(\otimes)} \xrightarrow{\vdash C, C^{\perp}} \xrightarrow{(ax)} \frac{\vdash A \otimes B, A^{\perp}, B^{\perp}}{\vdash A \otimes B, A^{\perp}, B^{\perp}, C, C^{\perp}} \xrightarrow{(\%)} \xrightarrow{\vdash A \otimes B, A^{\perp} \otimes B^{\perp}, C, C^{\perp}} \xrightarrow{(\%)} \xrightarrow{\vdash A \otimes B, (A^{\perp} \otimes B^{\perp}) \otimes C, C^{\perp}} \xrightarrow{(\%)}$$

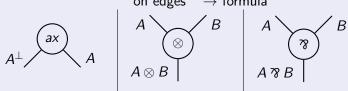

$$\frac{ \frac{\vdash A^{\perp}, A}{\vdash A \otimes B, A^{\perp}, B^{\perp}} \overset{(ax)}{\otimes} \frac{\vdash}{\vdash C, C^{\perp}} \overset{(ax)}{} }{} \frac{\vdash A \otimes B, A^{\perp}, B^{\perp}}{\vdash A \otimes B, A^{\perp}, B^{\perp}, C, C^{\perp}} \overset{(ax)}{} \frac{\vdash A \otimes B, A^{\perp} \otimes B^{\perp}, C, C^{\perp}}{\vdash A \otimes B, (A^{\perp} \otimes B^{\perp}) \otimes C, C^{\perp}} \overset{(\%)}{} }{} \frac{\vdash A \otimes B, (A^{\perp} \otimes B^{\perp}) \otimes C, C^{\perp}}{} \overset{(\%)}{}$$

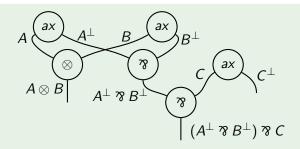
$$\frac{\overline{\vdash A^{\perp}, A} \xrightarrow{(ax)} \overline{\vdash B, B^{\perp}} \xrightarrow{(ax)} \overline{\vdash C, C^{\perp}} \xrightarrow{(ax)}}{\underline{\vdash A \otimes B, A^{\perp}, B^{\perp}} \xrightarrow{(8)} \overline{\vdash C, C^{\perp}} \xrightarrow{(mix_2)}} \frac{(Ax)}{\underline{\vdash A \otimes B, A^{\perp} \otimes B^{\perp}, C, C^{\perp}} \xrightarrow{(8)} \overline{\vdash A \otimes B, (A^{\perp} \otimes B^{\perp}) \otimes C, C^{\perp}}} \xrightarrow{(8)}$$

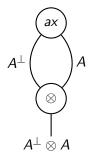

$$\frac{\overline{\vdash A^{\perp}, A} \xrightarrow{(ax)} \overline{\vdash B, B^{\perp}} \xrightarrow{(ax)} \overline{\vdash C, C^{\perp}} \xrightarrow{(ax)}}{\vdash A \otimes B, A^{\perp}, B^{\perp}} \xrightarrow{(\otimes)} \frac{\vdash C, C^{\perp}}{\vdash A \otimes B, A^{\perp} \otimes B^{\perp}, C, C^{\perp}} \xrightarrow{(\Re)} \overline{\vdash A \otimes B, (A^{\perp} \otimes B^{\perp}) \otimes C, C^{\perp}} \xrightarrow{(\Re)}$$

$$\frac{-A^{\perp}, A}{(ax)} \xrightarrow{\frac{\vdash B, B^{\perp}}{\vdash B, B^{\perp}}} \xrightarrow{(ax)} \xrightarrow{\vdash C, C^{\perp}} \xrightarrow{(ax)} (mix_2)}{(mix_2)}$$

$$\frac{\vdash A \otimes B, A^{\perp}, B^{\perp}, C, C^{\perp}}{\vdash A \otimes B, A^{\perp} \ \Re B^{\perp}, C, C^{\perp}} \xrightarrow{(\Re)} (\Re)$$

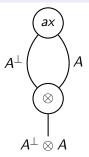

$$\frac{\vdash A \otimes B, (A^{\perp} \ \Re B^{\perp}) \ \Re C, C^{\perp}}{\vdash A \otimes B, (A^{\perp} \ \Re B^{\perp}) \ \Re C, C^{\perp}} \xrightarrow{(\aleph)}$$




Proof structure

Definition

Partial multigraph with labels on vertices \to ax $/ \otimes / \%$ on edges \to formula

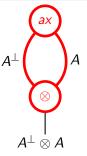

Danos-Regnier Correctness Criterion

Cusp: a \Im and its two premises

Switching path/cycle: does not contain any cusp

A proof structure is correct if it does not contain any switching cycle

= if every cycle has a cusp

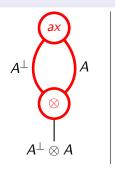

Danos-Regnier Correctness Criterion

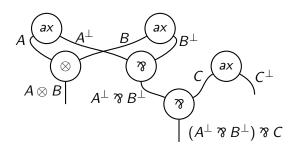
Cusp: a % and its two premises

Switching path/cycle: does not contain any cusp

A proof structure is correct if it does not contain any switching cycle

= if every cycle has a cusp

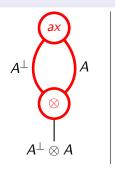


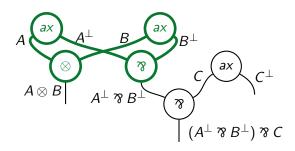

Danos-Regnier Correctness Criterion

Cusp: a \Im and its two premises

Switching path/cycle: does not contain any cusp

A proof structure is *correct* if it does not contain any switching cycle = if every cycle has a cusp

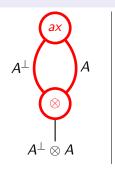


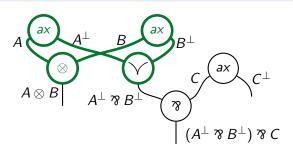

Danos-Regnier Correctness Criterion

Cusp: a \Im and its two premises

Switching path/cycle: does not contain any cusp

A proof structure is *correct* if it does not contain any switching cycle = if every cycle has a cusp

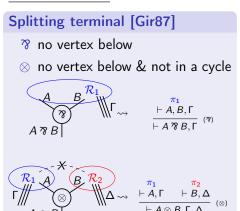



Danos-Regnier Correctness Criterion

Cusp: a 78 and its two premises

Switching path/cycle: does not contain any cusp

A proof structure is *correct* if it does not contain any switching cycle = if every cycle has a cusp



Destination Sequentialization

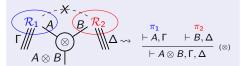
Sequentialization

Given a correct proof structure, there is a proof desequentializing to it.

How to prove it? One usual way: by finding a splitting vertex

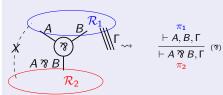
Destination Sequentialization

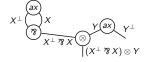
Sequentialization


Given a correct proof structure, there is a proof desequentializing to it.

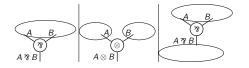
How to prove it? One usual way: by finding a splitting vertex

Splitting terminal [Gir87]


- no vertex below
- \otimes no vertex below & not in a cycle


Splitting ? (aka section) [DR89]

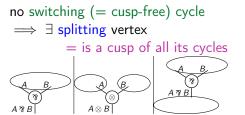
its conclusion edge is not in a cycle


Sequentialization

Proof nets

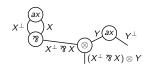
Cusp: a 7 and its two premises

no switching (= cusp-free) cycle ⇒ ∃ splitting vertex



Sequentialization

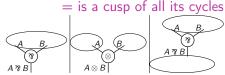
Proof nets



Cusp: a \Im and its two premises

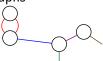
Sequentialization

Proof nets



Cusp: a 78 and its two premises

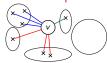
no switching (= cusp-free) cycle


⇒ ∃ splitting vertex

= is a cusp of all its cycle

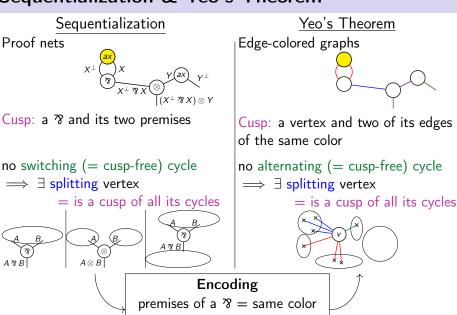
Yeo's Theorem

Edge-colored graphs



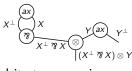
Cusp: a vertex and two of its edges of the same color

 $no \ alternating \ (= \ cusp-free) \ cycle$


 $\implies \exists$ splitting vertex

= is a cusp of all its cycles

Sequentialization Yeo's Theorem Proof nets Edge-colored graphs Cusp: a \Re and its two premises Cusp: a vertex and two of its edges of the same color **no** switching (= cusp-free) cycle no alternating (= cusp-free) cycle $\implies \exists$ splitting vertex $\implies \exists$ splitting vertex = is a cusp of all its cycles = is a cusp of all its cycles **Encoding** premises of a \Re = same color


all other edges of different colors

all other edges of different colors

Sequentialization

Proof nets

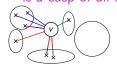
Cusp: a \Re and its two premises

no switching (= cusp-free) cycle

⇒ ∃ splitting vertex
= is a cusp of all its cycles

Generalized Yeo's Theorem

Half-Edge-colored graphs

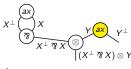


Cusp: a vertex and two of its edges of the same color near it

no alternating (= cusp-free) cycle

 $\Rightarrow \exists$ splitting vertex

= is a cusp of all its cycles



Encoding

premises of a \Re = same color all other edges of different colors

Sequentialization

Proof nets

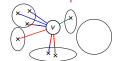
Cusp: a \Re and its two premises

no switching (= cusp-free) cycle $\implies \exists$ splitting vertex

= is a cusp of all its cycles

Generalized Yeo's Theorem

Half-Edge-colored graphs

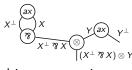


Cusp: a vertex and two of its edges of the same color near it

no alternating (= cusp-free) cycle

 $\implies \exists$ splitting vertex

= is a cusp of all its cycles



Encoding

premises of a \Re = same color all other edges of different colors

Sequentialization

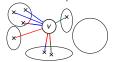
Proof nets

Cusp: a \Re and its two premises

no switching (= cusp-free) cycle

 $\implies \exists$ splitting vertex = is a cusp of all its cycles

Generalized Yeo's Theorem


Half-Edge-colored graphs

Cusp: a vertex and two of its edges of the same color near it

no alternating (= cusp-free) cycle $\implies \exists$ splitting vertex in some set

= is a cusp of all its cycles

Encoding

premises of a \Re = same color all other edges of different colors

Outline

- ► Multiplicative Linear Logic & Sequentialization
 - Sequent Calculus & Proof Nets
 - Sequentialization by splitting vertices

► Simple proof of (a generalized) Yeo's theorem

Strict Partial Order on Vertices

<u>Main idea:</u> follow a path evidence of progression = a strict partial order \triangleleft <u>Goal:</u> a \triangleleft -maximal vertex is splitting

Definition

(1) p is a simple open path from v to u

Strict Partial Order on Vertices

<u>Main idea:</u> follow a path evidence of progression = a strict partial order \triangleleft <u>Goal:</u> a \triangleleft -maximal vertex is splitting

Definition

(1) p is a simple open cusp-free path from v to u

<u>Main idea:</u> follow a path evidence of progression = a strict partial order \triangleleft <u>Goal:</u> a \triangleleft -maximal vertex is splitting

Definition

- $(v, \alpha) \lhd (u, \beta)$ means there is a path p such that:
- (1) p is a simple open cusp-free path from v to u with starting color not α and with ending color β

<u>Main idea:</u> follow a path evidence of progression = a strict partial order \triangleleft <u>Goal:</u> a \triangleleft -maximal vertex is splitting

Definition

- $(v, \alpha) \lhd (u, \beta)$ means there is a path p such that:
- (1) p is a simple open cusp-free path from v to u with starting color not α and with ending color β
- (2) there is no simple open cusp-free path q starting from u with color not β and going back on p

<u>Main idea:</u> follow a path evidence of progression = a strict partial order \triangleleft <u>Goal:</u> a \triangleleft -maximal vertex is splitting

Definition

- $(v, \alpha) \lhd (u, \beta)$ means there is a path p such that:
- (1) p is a simple open cusp-free path from v to u with starting color not α and with ending color β
- (2) there is no simple open cusp-free path q starting from u with color not β and going back on p

Proof: < is a strict partial order.

Irreflexivity: by definition.

Transitivity: if $(v,\alpha) \stackrel{p}{\triangleleft} (u,\beta) \stackrel{q}{\triangleleft} (w,\gamma)$ then $(v,\alpha) \stackrel{p \cdot q}{\triangleleft} (w,\gamma)$.

- **(1)** ?
- **(2)** ?

<u>Main idea:</u> follow a path evidence of progression = a strict partial order \triangleleft <u>Goal:</u> a \triangleleft -maximal vertex is splitting

Definition

- $(v, \alpha) \lhd (u, \beta)$ means there is a path p such that:
- (1) p is a simple open cusp-free path from v to u with starting color not α and with ending color β
- (2) there is no simple open cusp-free path q starting from u with color not β and going back on p

Proof: *⊲* is a strict partial order.

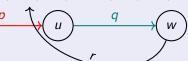
Irreflexivity: by definition.

Transitivity: if $(v,\alpha) \stackrel{p}{\triangleleft} (u,\beta) \stackrel{q}{\triangleleft} (w,\gamma)$ then $(v,\alpha) \stackrel{p \cdot q}{\triangleleft} (w,\gamma)$.

- **(1)** √
- (2) ?

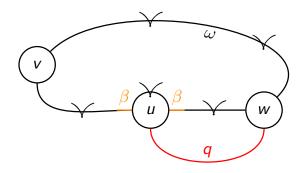
<u>Main idea:</u> follow a path evidence of progression = a strict partial order \triangleleft <u>Goal:</u> a \triangleleft -maximal vertex is splitting

Definition

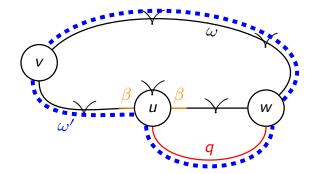

- $(v, \alpha) \lhd (u, \beta)$ means there is a path p such that:
- (1) p is a simple open cusp-free path from v to u with starting color not α and with ending color β
- (2) there is no simple open cusp-free path q starting from u with color not β and going back on p

Proof: *⊲* is a strict partial order.

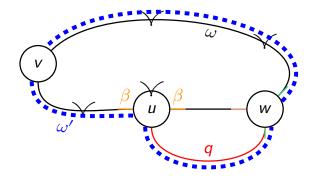
Irreflexivity: by definition.


Transitivity: if $(v, \alpha) \stackrel{p}{\triangleleft} (u, \beta) \stackrel{q}{\triangleleft} (w, \gamma)$ then $(v, \alpha) \stackrel{p \cdot q}{\triangleleft} (w, \gamma)$.

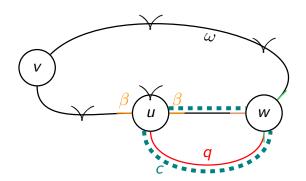
- **(1)** √
- **(2)** √


Cusp Minimization

Let ω be a cycle with a cusp at u of color β , but no cusp at v. If there is a simple open cusp-free path q starting from u with color not β and going back on ω , then either there exists a cusp-free cycle or there is a cycle ω' with no cusp at v and strictly less cusps than ω .


Cusp Minimization

Let ω be a cycle with a cusp at u of color β , but no cusp at v. If there is a simple open cusp-free path q starting from u with color not β and going back on ω , then either there exists a cusp-free cycle or there is a cycle ω' with no cusp at v and strictly less cusps than ω .

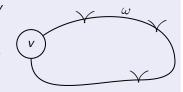

Cusp Minimization

Let ω be a cycle with a cusp at u of color β , but no cusp at v. If there is a simple open cusp-free path q starting from u with color not β and going back on ω , then either there exists a cusp-free cycle or there is a cycle ω' with no cusp at v and strictly less cusps than ω .

Cusp Minimization

Let ω be a cycle with a cusp at u of color β , but no cusp at v. If there is a simple open cusp-free path q starting from u with color not β and going back on ω , then either there exists a cusp-free cycle or there is a cycle ω' with no cusp at v and strictly less cusps than ω .

<!-maximal is splitting</pre>


Lemma

Assume v is not splitting. For any color α , there exists (u, β) such that $(v, \alpha) \triangleleft (u, \beta)$. Furthermore, there is a cusp at u of color β .

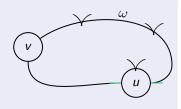
Proof.

v not splitting \implies cycle ω with no cusp at v

- w.l.o.g. starting color of ω is not α
- ullet w.l.o.g. ω has a minimal number of cusps

<!-maximal is splitting</pre>

Lemma


Assume v is not splitting. For any color α , there exists (u, β) such that $(v, \alpha) \triangleleft (u, \beta)$. Furthermore, there is a cusp at u of color β .

Proof.

v not splitting \implies cycle ω with no cusp at v

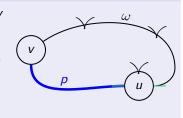
- w.l.o.g. starting color of ω is not α
- ullet w.l.o.g. ω has a minimal number of cusps

No cusp-free cycle: set u the first cusp of ω , cusp of color β

<-maximal is splitting</pre>

Lemma

Assume v is not splitting. For any color α , there exists (u, β) such that $(v, \alpha) \triangleleft (u, \beta)$. Furthermore, there is a cusp at u of color β .


Proof.

v not splitting \implies cycle ω with no cusp at v

- w.l.o.g. starting color of ω is not α
- ullet w.l.o.g. ω has a minimal number of cusps

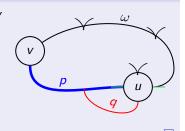
No cusp-free cycle: set u the first cusp of ω , cusp of color β

$$(v,\alpha) \stackrel{p}{\triangleleft} (u,\beta)$$
?

<-maximal is splitting</pre>

Lemma

Assume v is not splitting. For any color α , there exists (u, β) such that $(v, \alpha) \triangleleft (u, \beta)$. Furthermore, there is a cusp at u of color β .


Proof.

v not splitting \implies cycle ω with no cusp at v

- w.l.o.g. starting color of ω is not α
- ullet w.l.o.g. ω has a minimal number of cusps

No cusp-free cycle: set u the first cusp of ω , cusp of color β

 $(v,\alpha) \stackrel{p}{\lhd} (u,\beta)$? Yes, by Cusp Minimization.

Generalized Yeo's Theorem

Generalized Yeo's Theorem

In a graph G with an half-edge coloring, pose P a set of vertex-color pairs containing at least all (v,α) such that there is a cusp at v with half-edges of color α . If G has no cusp-free cycle, the vertex of any \triangleleft -maximal element of P is splitting.

Proof.

A non-splitting vertex is smaller than some vertex in P.

Generalized Yeo's Theorem

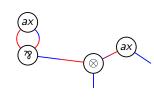
Generalized Yeo's Theorem

In a graph G with an half-edge coloring, pose P a set of vertex-color pairs containing at least all (v,α) such that there is a cusp at v with half-edges of color α . If G has no cusp-free cycle, the vertex of any \triangleleft -maximal element of P is splitting.

Proof.

A non-splitting vertex is smaller than some vertex in P.

Back to (colored) proof nets: cusp = 3 We get a vertex:

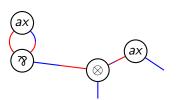

Splitting with *P* all vertex-color pairs

Splitting % or \otimes with P all %- and \otimes -color pairs

Splitting \Im with P all \Im -color pairs

Splitting terminal with $P := \{(v, \alpha) \mid$

v is a \Re or \otimes and α is the color of one of its premises}


Conclusion

Sequentialization

Given a correct proof structure, there is a proof desequentializing to it.

- Sequentialization by splitting vertices from Yeo's theorem by only defining a coloring
- No other encoding → can translate our simple proof of Yeo as one of sequentialization (i.e. just redefine what a cusp is)
- Other theorems in graph theory, known to be equivalent to Yeo's theorem, can be proved easily this way – only by defining a coloring
- Can be extended to proof nets with additives [HG05]
- Proof simple enough to be formalized in PROCQ

Thank you!

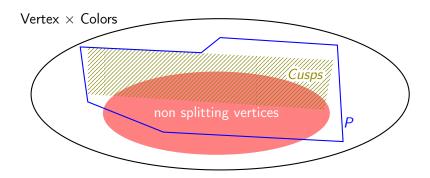
References I

- [DR89] Vincent Danos and Laurent Regnier. "The structure of multiplicatives". In: Archive for Mathematical Logic 28 (1989), pp. 181–203. DOI: 10.1007/BF01622878.
- [GH83] Jerrold W. Grossman and Roland Häggkvist. "Alternating Cycles in Edge-Partitioned Graphs". In: Journal of Combinatorial Theory, Series B 34.1 (1983), pp. 77–81. ISSN: 0095-8956. DOI: 10.1016/0095-8956(83)90008-4. URL: https://www.sciencedirect.com/science/article/pii/0095895683900084.
- [Gir87] Jean-Yves Girard. "Linear logic". In: *Theoretical Computer Science* 50 (1987), pp. 1–102. DOI: 10.1016/0304-3975(87)90045-4.

References II

- [HG05] Dominic Hughes and Rob van Glabbeek. "Proof Nets for Unit-free Multiplicative-Additive Linear Logic". In: ACM Transactions on Computational Logic 6.4 (2005), pp. 784–842. DOI: 10.1145/1094622.1094629.
- [Kot59] Anton Kotzig. "On the theory of finite graphs with a linear factor. II.". slo. In: Matematicko-Fyzikálny Časopis 09.3 (1959). In Slovak, with as original title Z teórie konečných grafov s lineárnym faktorom. II., pp. 136–159. URL: https://eudml.org/doc/29908.
- [Ngu20] Lê Thành Dũng Nguyễn. "Unique perfect matchings, forbidden transitions and proof nets for linear logic with Mix". In: Logical Methods in Computer Science 16.1 (Feb. 2020). DOI: 10.23638/LMCS-16(1:27)2020.

References III


- [Ret03] Christian Retoré. "Handsome proof-nets: perfect matchings and cographs". In: Theoretical Computer Science 294.3 (2003), pp. 473–488.
- [Sey78] Paul D. Seymour. "Sums of circuits". In: Graph Theory and Related Topics (1978). Ed. by J. A. Bondy and U. S. R. Murty, pp. 341–355.
- [SS79] D. J. Shoesmith and T. J. Smiley. "Theorem on Directed Graphs, Applicable to Logic". In: Journal of Graph Theory 3.4 (1979), pp. 401–406. DOI: 10.1002/jgt.3190030412. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190030412.

References IV

```
[Sze04] Stefan Szeider. "On Theorems Equivalent with Kotzig's Result on Graphs with Unique 1-Factors". In: Ars Combinatoria 73 (2004), pp. 53-64. URL: https://www.ac.tuwien.ac.at/files/pub/szeider-AC-2004.pdf.
```

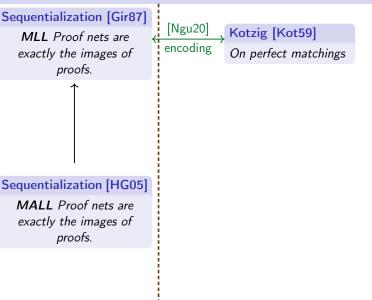
[Yeo97] Anders Yeo. "A Note on Alternating Cycles in Edge-Coloured Graphs". In: *Journal of Combinatorial Theory, Series B* 69.2 (1997), pp. 222–225. DOI: 10.1006/jctb.1997.1728.

Interest of the parameter P

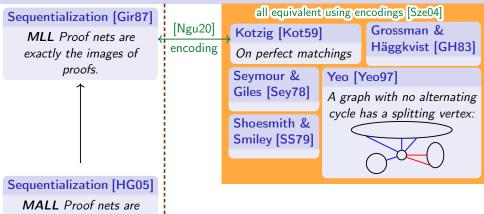
(maximum elements for \triangleleft are on top)

Sequentialization [HG05]

MALL Proof nets are exactly the images of proofs.

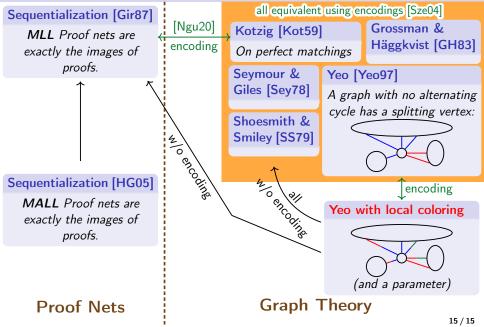

Sequentialization [Gir87]

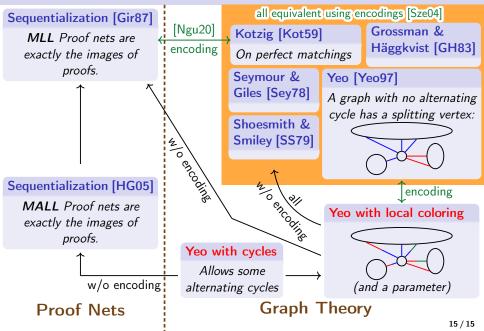
MLL Proof nets are exactly the images of proofs.

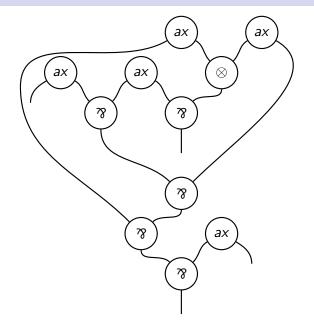


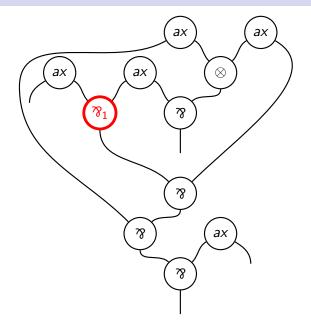
Sequentialization [HG05]

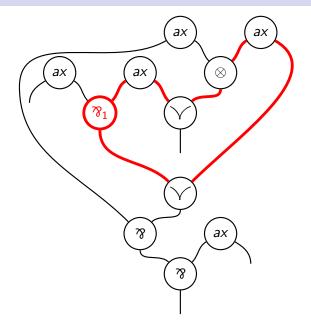
MALL Proof nets are exactly the images of proofs.


Proof Nets Graph Theory




Proof Nets


exactly the images of proofs.


Graph Theory

