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Introduction

Proof nets: graphical, more canonical representation of LL proofs

Desequentialization .
K In (unit-free) MLL:
_______ Proof multiple correctness criteria,
s-- roo L. .
structures\  proofs of sequentialization

__________ Still sequentialization is not
Proof trees ~ ¢— considered easy.
Sequentialization

This talk: easy proof(s) of sequentialization by splitting vertices, from a
general theorem of graph theory
— follows a line of work from Rétoré [Ret03] and Nguy&n [Ngu20]
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Outline

» Multiplicative Linear Logic & Sequentialization
@ Sequent Calculus & Proof Nets
@ Sequentialization by splitting vertices

» Simple proof of (a generalized) Yeo's theorem
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Unit-free Multiplicative Linear Logic with Mix

Formulas
A:=X| XL |AQA|ABRA
Orthogonality

(XxHt=x (A® B): = AL 3 Bt (A% B): = At @ Bt
Rules
FAT FBA A B,T
T (@) (®) — (?)
HA- A FA® B,I,A FA®RB,I
. [ I AN
N (mixo) FT.A (mix2)
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Example of proof structure by desequentialization

(ax)
AL A - B,Bt

FA® B, AL, BL © FC, ct
FA®B,AL B+, C,Ct -
FA® B,A-®BL C,Cct
kA@B,(AL@BL)wC,CL(

(ax)
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Example of proof structure by desequentialization

(ax) (ax)
F B, B+ FC,Cct
(ax) (mix2)
FAL A }—B,BL,C,CL( )
FA®B,AL BL C,Ct -
FA® B,At®BL C Ct

()
FA®B,(At®BY)®C, C*

(AL BLHY® C
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Proof structure

Definition
Partial multigraph with labels on vertices — ax /® / %
on edges — formula

(At BL)®C
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Correctness

Al ® A
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Correctness

Danos-Regnier Correctness Criterion

Cusp: a ® and its two premises
Switching path/cycle: does not contain any cusp
A proof structure is correct if it does not contain any switching cycle

= if every cycle has a cusp

At A

Al ® A
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Destination Sequentialization

Sequentialization

Given a correct proof structure, there is a proof desequentializing to it.

How to prove it? One usual way: by finding a splitting vertex
Splitting terminal [Gir87]
7? no vertex below
® no vertex below & not in a cycle
@ r., FAB,T

T - @
A% B FA®B,T

1 T2

FAT +BA
®

FA®B,T,A ©
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Destination Sequentialization

Sequentialization
Given a correct proof structure, there is a proof desequentializing to it.

How to prove it? One usual way: by finding a splitting vertex

Splitting terminal [Gir87]

Splitting 7® (aka section) [DR89]
8 no vertex below

its conclusion edge is not in a cycle
® no vertex below & not in a cycle
@ r. FAB,T
A7 B FARBT

1

FA B,T
——
FA®B,T

T2

1 T2
FAT +BA
(®)
FA®B,T,A
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Sequentialization & Yeo’'s Theorem

Sequentialization
Proof nets

Cusp: a 7 and its two premises

no switching (= cusp-free) cycle
= J splitting vertex

@ 2o 26D
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Sequentialization
Proof nets

Cusp: a 7 and its two premises

no switching (= cusp-free) cycle
= J splitting vertex
= is a cusp of all its cycles

?E

Generalized Yeo's Theorem
Half-Edge-colored graphs

Cusp: a vertex and two of its edges
of the same color near it

no alternating (= cusp-free) cycle
— 3 splitting vertex in some set
= is a cusp of all its cycles

o
TR
kD

Encoding
premises of a % = same color
aII other edges of different colors

J
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Outline

» Simple proof of (a generalized) Yeo's theorem
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Strict Partial Order on Vertices
Main idea: follow a path evidence of progression = a strict partial order <
Goal: a <-maximal vertex is splitting
Definition
v < u means there is a path p such that:

(1) pis a simple open path from v to u
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Strict Partial Order on Vertices x Colors

Main idea: follow a path evidence of progression = a strict partial order <
Goal: a <-maximal vertex is splitting

Definition

(v,a) < (u, 5) means there is a path p such that:

(1) pis a simple open cusp-free path from v to u with starting color not
« and with ending color 8
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(1) pis a simple open cusp-free path from v to u with starting color not
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(2) there is no simple open cusp-free path ¢ starting from u with color not
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Proof: < is a strict partial order.
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Transitivity: if (v, «) 4 (u,B) 4 (w, ) then (v,a) g (w,7).
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Key (and sole) intermediate lemma
Cusp Minimization

Let w be a cycle with a cusp at u of color 3, but no cusp at v. If there is a
simple open cusp-free path q starting from u with color not 8 and going
back on w, then either there exists a cusp-free cycle or there is a cycle «'
with no cusp at v and strictly less cusps than w.

Proof:
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Key (and sole) intermediate lemma
Cusp Minimization

Let w be a cycle with a cusp at u of color 3, but no cusp at v. If there is a
simple open cusp-free path q starting from u with color not 8 and going
back on w, then either there exists a cusp-free cycle or there is a cycle «'
with no cusp at v and strictly less cusps than w.

Proof:

*
N
4y -®
C Emms
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<-maximal is splitting

Lemma
Assume v is not splitting. For any color «, there exists (u, 3) such that
(v,a) < (u, ). Furthermore, there is a cusp at u of color f3.
Proof.
v not splitting = cycle w with no cusp at v

@ w.l.o.g. starting color of w is not «

@ w.l.o.g. w has a minimal number of cusps
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<-maximal is splitting

Lemma

Assume v is not splitting. For any color «, there exists (u, 3) such that
(v,a) < (u, ). Furthermore, there is a cusp at u of color f3.

Proof.

v not splitting = cycle w with no cusp at v @
@ w.l.o.g. starting color of w is not «
@ w.l.o.g. w has a minimal number of cusps

No cusp-free cycle: set u the first cusp of w, p
cusp of color g

(v, ) 4 (u,B)? Yes, by Cusp Minimization.
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Generalized Yeo’'s Theorem

Generalized Yeo’'s Theorem

In a graph G with an half-edge coloring, pose P a set of vertex-color pairs
containing at least all (v, «) such that there is a cusp at v with half-edges
of color . If G has no cusp-free cycle, the vertex of any <1-maximal
element of P is splitting.

Proof.

A non-splitting vertex is smaller than some vertex in P. O
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Generalized Yeo’'s Theorem

Generalized Yeo’'s Theorem

In a graph G with an half-edge coloring, pose P a set of vertex-color pairs
containing at least all (v, «) such that there is a cusp at v with half-edges
of color . If G has no cusp-free cycle, the vertex of any <1-maximal
element of P is splitting.

Proof.
A non-splitting vertex is smaller than some vertex in P. O

Back to (colored) proof nets: cusp =
We get a vertex:

Splitting with P all vertex-color pairs @
Splitting % or @ with P all 8- and ®-color pairs @ @

Splitting ?® with P all %-color pairs |
Splitting terminal with P := {(v, a) |

vis a % or ® and « is the color of one of its premises}
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Conclusion

Sequentialization

Given a correct proof structure, there is a proof desequentializing to it.

Sequentialization by splitting vertices from Yeo's theorem by only
defining a coloring

No other encoding — can translate our simple proof of Yeo as one of
sequentialization (i.e. just redefine what a cusp is)

Other theorems in graph theory, known to be equivalent to Yeo's
theorem, can be proved easily this way — only by defining a coloring

Can be extended to proof nets with additives [HGO05]
Proof simple enough to be formalized in WRROCQ
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