On the tropical geometry of probabilistic programming languages

Davide Barbarossa, joint with Paolo Pistone

Department of Computer Science

 $IRN \langle L \mid I \rangle$ Kickoff meeting

12/05/2025

Tropical Mathematics for the $\lambda\text{-calculus}$

Tropical Mathematics for the λ -calculus

Barbarossa, Pistone – CSL'24

Metric & Differential Analysis of Effectful Programs.

Tropical Mathematics for the λ -calculus

Barbarossa, Pistone – Draft

Tropical Geometry of Probabilistic Programming Languages.

Prog. Lang. \longrightarrow $QRel_!$

 ${\bf Type} \qquad \longmapsto \quad {\bf formal \ variables \ set}$

 $Program \quad \longmapsto \quad formal \ power \ series$

Prog. Lang.
$$\longrightarrow$$

$$Q$$
Rel_!

$$\begin{array}{ccc} \text{Type} & \longmapsto & \text{formal variables set} \\ A & & x_{\llbracket A \rrbracket} := \{x_a \mid a \in \llbracket A \rrbracket \} \end{array}$$

$$\begin{array}{ll} \text{Program} & \longmapsto & \text{formal power series} \\ \vec{x}: \vec{A} \vdash M: B & & [\![\vec{x}: \vec{A} \vdash M: B]\!] \in Q\{\!\{x_{[\![A]\!]}\}\!\}^{[\![B]\!]} \end{array}$$

Say the language is probabilistic. Then for $Q = \mathbb{R}_{\geq 0}^{+\infty}$ we have

$$\llbracket \vdash M : \text{Bool} \rrbracket_i = \mathbb{P}(M \to i)$$

$$\sum_{n \in \mathbb{N}} a_n x^n \in [0, 1] \{\!\!\{ x \}\!\!\} \ \mapsto \ \inf_{n \in \mathbb{N}} \{ nx - \ln a_n \} \in \mathbb{T} \{\!\!\{ x \}\!\!\}$$

$$\sum_{n \in \mathbb{N}} a_n x^n \in [0, 1] \{\!\!\{ x \}\!\!\} \ \mapsto \inf_{n \in \mathbb{N}} \{ nx - \ln a_n \} \in \mathbb{T} \{\!\!\{ x \}\!\!\}$$
$$\varphi_0(x) = 1$$

$$\begin{split} \mathbb{T} := & \text{semiring } [0, +\infty] \text{ with} \\ & \text{add } := \inf, \text{ zero } := +\infty, \\ & \text{multiply } := +, \text{ one } := 0 \end{split}$$

$$\sum_{n \in \mathbb{N}} a_n x^n \in [0, 1] \{\!\!\{ x \}\!\!\} \ \mapsto \ \inf_{n \in \mathbb{N}} \{ nx - \ln a_n \} \in \mathbb{T} \{\!\!\{ x \}\!\!\}$$

$$\varphi_0(x) = 1$$

$$\varphi_1(x) = \min\{x + \frac{1}{2}, 1\}$$

$$\mathbb{T} := \text{ semiring } [0, +\infty] \text{ with }$$

$$\text{add} := \inf, \text{ zero} := +\infty,$$

$$\text{multiply} := +, \text{ one} := 0$$

$$\sum_{n \in \mathbb{N}} a_n x^n \in [0, 1] \{\!\!\{x\}\!\!\} \mapsto \inf_{n \in \mathbb{N}} \{nx - \ln a_n\} \in \mathbb{T} \{\!\!\{x\}\!\!\}$$

$$\varphi_0(x) = 1$$

$$\varphi_1(x) = \min\{x + \frac{1}{2}, 1\}$$

$$\varphi_2(x) = \min\{2x + \frac{1}{4}, x + \frac{1}{2}, 1\}$$

$$\mathbb{T} := \text{ semiring } [0, +\infty] \text{ with }$$

$$\text{add} := \inf, \text{ zero} := +\infty,$$

$$\text{multiply} := +, \text{ one} := 0$$

$$\sum_{n \in \mathbb{N}} a_n x^n \in [0, 1] \{\!\!\{x\}\!\!\} \mapsto \inf_{n \in \mathbb{N}} \{nx - \ln a_n\} \in \mathbb{T} \{\!\!\{x\}\!\!\}$$

$$\varphi_0(x) = 1$$

$$\varphi_1(x) = \min\{x + \frac{1}{2}, 1\}$$

$$\varphi_2(x) = \min\{2x + \frac{1}{4}, x + \frac{1}{2}, 1\}$$

$$\varphi_3(x) = \min\{3x + \frac{1}{8}, 2x + \frac{1}{4}, x + \frac{1}{2}, 1\}$$

$$\mathbb{T} := \text{ semiring } [0, +\infty] \text{ with }$$

$$\text{add} := \inf, \text{ zero} := +\infty,$$

$$\text{multiply} := +, \text{ one} := 0$$

$$\sum_{n \in \mathbb{N}} a_n x^n \in [0, 1] \{\!\!\{x\}\!\!\} \ \mapsto \inf_{n \in \mathbb{N}} \{nx - \ln a_n\} \in \mathbb{T} \{\!\!\{x\}\!\!\}$$

$$\varphi_0(x) = 1$$

$$\varphi_1(x) = \min\{x + \frac{1}{2}, 1\}$$

$$\varphi_2(x) = \min\{2x + \frac{1}{4}, x + \frac{1}{2}, 1\}$$

$$\varphi_3(x) = \min\{3x + \frac{1}{8}, 2x + \frac{1}{4}, x + \frac{1}{2}, 1\}$$

$$\varphi_4(x) = \min\{4x + \frac{1}{16}, 3x + \frac{1}{8}, 2x + \frac{1}{4}, x + \frac{1}{2}, 1\}$$

$$T := \text{ semiring } [0, +\infty] \text{ with }$$

$$\text{add} := \inf, \text{ zero} := +\infty,$$

$$\text{multiply} := +, \text{ one} := 0$$

$$\sum_{n \in \mathbb{N}} a_n x^n \in [0, 1] \{\!\!\{x\}\!\!\} \mapsto \inf_{n \in \mathbb{N}} \{nx - \ln a_n\} \in \mathbb{T} \{\!\!\{x\}\!\!\}$$

$$\varphi_0(x) = 1$$

$$\varphi_1(x) = \min\{x + \frac{1}{2}, 1\}$$

$$\varphi_2(x) = \min\{2x + \frac{1}{4}, x + \frac{1}{2}, 1\}$$

$$\varphi_3(x) = \min\{3x + \frac{1}{8}, 2x + \frac{1}{4}, x + \frac{1}{2}, 1\}$$

$$\varphi_4(x) = \min\{4x + \frac{1}{16}, 3x + \frac{1}{8}, 2x + \frac{1}{4}, x + \frac{1}{2}, 1\}$$

$$\vdots$$

$$\varphi(x) = \inf_n \{nx + \frac{1}{2^n}\}$$

6/21

Intractable problems (e.g. root finding, optimization)

Intractable problems (e.g. root finding, optimization)

```
\begin{array}{c} \text{tropicalization:} \\ + \mapsto \min \\ \times \mapsto + \end{array}
```

Combinatorial (and sometimes tractable!) ones

- tropical roots are found in linear time
- likelihood estimation in statistical models
- machine learning (ReLU networks)
- optimal routing paths

$$\lambda ext{-calculus} + rac{dash M:A \quad dash N:A}{dash M \oplus_X N:A} + Arithmetic + Conditionals + rac{dash M:A
ightarrow A}{dash extit{fix}.M:A}$$

 $M \oplus_X N \xrightarrow{X} M$

 $M \oplus_X N \overset{\overline{X}}{\twoheadrightarrow} N$

 $M := (\text{True} \oplus_X \text{False}) \oplus_X ((\text{True} \oplus_X \text{False}) \oplus_X (\text{False} \oplus_X \text{True}))$

$$M := (\text{True} \oplus_X \text{False}) \oplus_X ((\text{True} \oplus_X \text{False}) \oplus_X (\text{False} \oplus_X \text{True}))$$

$$P_{ll} = X^{2}$$

$$P_{rll} = X^{2}\overline{X}$$

$$P_{rrr} = \overline{X}^{3}$$

$$M := (\text{True} \oplus_X \text{False}) \oplus_X ((\text{True} \oplus_X \text{False}) \oplus_X (\text{False} \oplus_X \text{True}))$$

$$P_{ll} = X^{2}$$

$$P_{rll} = X^{2}\overline{X}$$

$$P_{rrr} = \overline{X}^{3}$$

What is the most likely path $M \rightarrow$ True?

$$M := (\text{True} \oplus_X \text{False}) \oplus_X ((\text{True} \oplus_X \text{False}) \oplus_X (\text{False} \oplus_X \text{True}))$$

ll	rll	rrr	lr	rlr	rrl
X^2	$X^2\overline{X}$	\overline{X}^3	$X\overline{X}$	$X\overline{X}^2$	$X\overline{X}^2$

 $R \downarrow O$

R	True	False
ll	1	0
rll	1	0
rrr	1	0
lr	0	1
rlr	0	1
rrl	0	1

Hidden Markov Model

Maximum A Posteriori Estimation:

For fixed X, \overline{X} , given the observation " $M \rightarrow$ True", which is its most likely explanation?

$$M := (\text{True} \oplus_X \text{False}) \oplus_X ((\text{True} \oplus_X \text{False}) \oplus_X (\text{False} \oplus_X \text{True}))$$

ll	rll	rrr	lr	rlr	rrl
X^2	$X^2\overline{X}$	\overline{X}^3	$X\overline{X}$	$X\overline{X}^2$	$X\overline{X}^2$

R \downarrow O

R	True	False
ll	1	0
rll	1	0
rrr	1	0
lr	0	1
rlr	0	1
rrl	0	1

Hidden Markov Model

Maximum A Posteriori Estimation:

For fixed X, \overline{X} , given the observation " $M \twoheadrightarrow$ True", which is its most likely explanation?

 \rightarrow find a reduction ω_0 maximizing $\mathbb{P}(R = \omega_0 \mid O = \text{True})$:

$$\mathbb{P}(R = \omega_0) = \max\{X^2, X^2 \overline{X}, \overline{X}^3\}$$

$$M := (\text{True} \oplus_X \text{False}) \oplus_X ((\text{True} \oplus_X \text{False}) \oplus_X (\text{False} \oplus_X \text{True}))$$

ll	rll	rrr	lr	rlr	rrl
X^2	$X^2\overline{X}$	\overline{X}^3	$X\overline{X}$	$X\overline{X}^2$	$X\overline{X}^2$

R	True	False
ll	1	0
rll	1	0
rrr	1	0
lr	0	1
rlr	0	1
rrl	0	1

Hidden Markov Model

Maximum likelihood estimation: Given the observation " $M \rightarrow$ " True",

which value of X, \overline{X} makes the explanation rll as likely as possible?

$$\underset{X,\overline{X}}{\operatorname{argmax}} \ \frac{X^2 \overline{X}}{\mathbb{P}(M \twoheadrightarrow \operatorname{True})}$$

$$M := \mathbf{fix}.(\lambda x. \star \oplus_X x) \twoheadrightarrow \star \oplus_X M$$

$$M := \mathbf{fix}.(\lambda x. \star \oplus_X x) \twoheadrightarrow \star \oplus_X M$$

$$M \xrightarrow{}_X \star \qquad X$$

$$M \xrightarrow{}_{\overline{X}} M \xrightarrow{}_X \star \qquad X\overline{X}$$

$$M \xrightarrow{}_{\overline{X}} M \xrightarrow{}_{\overline{X}} M \xrightarrow{}_X \star \qquad X\overline{X}^2$$
...

$$M := \mathbf{fix}.(\lambda x. \star \oplus_X x) \twoheadrightarrow \star \oplus_X M$$

0	1	2	3	
X	$X\overline{X}$	$X\overline{X}^2$	$X\overline{X}^3$	

D

	R	*
R	0	1
1	1	1
Ö	2	1
	3	1
	:	:

Hidden Markov Model

Maximum A Posteriori Estimation: given the observation "M terminates", which is its most likely explanation?

$$M := \mathbf{fix}.(\lambda x. \star \oplus_X x) \twoheadrightarrow \star \oplus_X M$$

0	1	2	3	
X	$X\overline{X}$	$X\overline{X}^2$	$X\overline{X}^3$	

 $\begin{array}{c}
R \\
0 \\
1 \\
2 \\
3
\end{array}$

Hidden Markov Model

Maximum A Posteriori Estimation: given the observation "M terminates", which is its most likely explanation?

 $\operatorname*{argmax}_{i}X\overline{X}^{i}$

$$F := \lambda fy.ifte(Oy, \star, f(Ny))$$

$$M_i := (\mathbf{fix}.F)(N^iD) \twoheadrightarrow \mathrm{ifte}(O(N^iD),\,\star,\,M_{i+1})$$

$$F := \lambda fy. \text{ifte}(Oy, \star, f(Ny))$$

$$M_i := (\mathbf{fix}.F)(N^iD) \twoheadrightarrow \text{ifte}(O(N^iD), \star, M_{i+1})$$

$$\begin{array}{lcl} \mathbb{P}(R=1) & = & \mathbb{P}(OD=0) \\ \mathbb{P}(R=i+1) & = & \mathbb{P}(O(N^iD)=0) \prod_{j=0}^{i-1} \mathbb{P}(O(N^jD) \neq 0) \end{array}$$

 $R \downarrow O$

R	*
0	1
1	1
2	1
3	1
:	:

Hidden Markov Model

Maximum A Posteriori Estimation: given the observation " M_0 terminates", which is its most likely explanation?

$$F := \lambda fy. ifte(Oy, \star, f(Ny))$$

$$M_i := (\mathbf{fix}.F)(N^iD) \twoheadrightarrow ifte(O(N^iD), \star, M_{i+1})$$

$$\begin{array}{lcl} \mathbb{P}(R=1) & = & \mathbb{P}(OD=0) \\ \mathbb{P}(R=i+1) & = & \mathbb{P}(O(N^iD)=0) \prod_{j=0}^{i-1} \mathbb{P}(O(N^jD) \neq 0) \end{array}$$

 $R \downarrow O$

R	*
0	1
1	1
2	1
3	1
:	:

Hidden Markov Model

Maximum A Posteriori Estimation:

given the observation " M_0 terminates", which is its most likely explanation?

$$\underset{i>1}{\operatorname{argmax}} \ \mathbb{P}(R=i)$$

Tropically weighted relational semantics of probabilistic λ -calculi is a natural framework to study statistical inference of Probabilistic Models.

$$M := \mathbf{fix}.(\lambda x. \star \oplus_X x) \twoheadrightarrow \star \oplus_X M$$

The tropical collapse

$$M := \mathbf{fix}.(\lambda x. \star \oplus_X x) \twoheadrightarrow \star \oplus_X M$$

$$M \twoheadrightarrow_X \star \qquad \qquad X$$

$$M \twoheadrightarrow_{\overline{X}} M \twoheadrightarrow_X \star \qquad \qquad X\overline{X}$$

$$M \twoheadrightarrow_{\overline{X}} M \twoheadrightarrow_{\overline{X}} M \twoheadrightarrow_X \star \qquad \qquad X\overline{X}^2$$
...

$$M := \mathbf{fix}.(\lambda x. \star \oplus_X x) \twoheadrightarrow \star \oplus_X M$$

$$M \twoheadrightarrow_X \star \qquad \qquad X$$

$$M \twoheadrightarrow_{\overline{X}} M \twoheadrightarrow_X \star \qquad \qquad X\overline{X}$$

$$M \twoheadrightarrow_{\overline{X}} M \twoheadrightarrow_{\overline{X}} M \twoheadrightarrow_X \star \qquad \qquad X\overline{X}^2$$

$$\mathbb{P}(M\downarrow) = \sum_{n\in\mathbb{N}} X\overline{X}^n$$

$$M := \mathbf{fix}.(\lambda x. \star \oplus_X x) \twoheadrightarrow \star \oplus_X M$$

$$\mathbb{P}(M\downarrow) = \sum_{n\in\mathbb{N}} X\overline{X}^n$$

$$\mathbf{t}\mathbb{P}(M\downarrow) = \inf_{n\in\mathbb{N}} \{X + n\overline{X}\}.$$

$$\mathbb{P}(M\downarrow)^!(X:=p,\overline{X}:=q:=1-p)=\sum_{n\in\mathbb{N}}pq^n=\frac{p}{1-q}=1$$

$$\mathbf{t}\mathbb{P}(M\downarrow) = \inf_{n\in\mathbb{N}} \{X + n\overline{X}\}.$$

$$M := \mathbf{fix}.(\lambda x. \star \oplus_X x) \twoheadrightarrow \star \oplus_X M$$

$$M \xrightarrow{}_X \star \qquad \qquad x$$
 $M \xrightarrow{}_X M \xrightarrow{}_X \star \qquad \qquad x + y$
 $M \xrightarrow{}_X M \xrightarrow{}_X M \xrightarrow{}_X \star \qquad \qquad x + 2y$

$$\mathbb{P}(M\downarrow)^!(X:=p,\overline{X}:=q:=1-p)=\sum_{n\in\mathbb{N}}pq^n=\tfrac{p}{1-q}=1$$

$$\mathbf{tP}(M\downarrow)!(X:=x,\overline{X}:=y)=\inf_{n\in\mathbb{N}}\{x+ny\}=x.$$

$$M := \mathbf{fix}.(\lambda x. \star \oplus_X x) \twoheadrightarrow \star \oplus_X M$$

• •

$$\mathbb{P}(M\downarrow)^!(X:=p,\overline{X}:=q:=1-p)=\sum_{n\in\mathbb{N}}pq^n=\tfrac{p}{1-q}=1$$

$$\mathbf{tP}(M\downarrow)!(X:=x,\overline{X}:=y)=\inf_{n\in\mathbb{N}}\{x+ny\}=x.$$

$$M:=\mathbf{fix}.(\lambda x.\star\oplus_X x)\twoheadrightarrow\star\oplus_X M$$

$$M \xrightarrow{}_X \star \qquad \qquad p$$

$$M \xrightarrow{}_{\overline{X}} M \xrightarrow{}_X \star \qquad pq$$

$$M \xrightarrow{}_{\overline{X}} M \xrightarrow{}_{\overline{X}} M \xrightarrow{}_X \star \qquad pq^2$$
...

$$[\![M]\!]!(p, 1-p) = \mathbb{P}(M\downarrow)!(X := p, \overline{X} := 1-p) = \frac{p}{1-q} = 1$$

$$\mathbf{tP}(M\downarrow)!(X:=x,\overline{X}:=y)=\inf_{n\in\mathbb{N}}\{x+ny\}=x.$$

$$M := \mathbf{fix}.(\lambda x. \star \oplus_X x) \twoheadrightarrow \star \oplus_X M$$

$$M \xrightarrow{}_X \star \qquad p$$

$$M \xrightarrow{}_{\overline{X}} M \xrightarrow{}_X \star \qquad pq$$

$$M \xrightarrow{}_{\overline{X}} M \xrightarrow{}_{\overline{X}} M \xrightarrow{}_X \star \qquad pq^2$$
...

$$[\![M]\!]!(p, 1-p) = \mathbb{P}(M\downarrow)!(X := p, \overline{X} := 1-p) = \frac{p}{1-q} = 1$$

$$\begin{array}{lcl} \mathbf{t}^! [\![M]\!] (-\ln p, -\ln(1-p)) & = & \mathbf{t} \mathbb{P}(M\downarrow)^! (X := -\ln p, \overline{X} := -\ln(1-p)) \\ & = & \inf_{n \in \mathbb{N}} \{-\ln p - n \ln(1-p)\} = -\ln p \\ & = & -\ln \left(\sup_{n \in \mathbb{N}} \omega\right) \end{array}$$

Tropical semantics makes the (infinite) search space finite!!

$$[\![M]\!]!(p, 1-p) = \mathbb{P}(M\downarrow)!(X := p, \overline{X} := 1-p) = \frac{p}{1-q} = 1$$

$$\begin{array}{lcl} \mathbf{t}^! \llbracket M \rrbracket (-\ln p, -\ln(1-p)) & = & \mathbf{t} \mathbb{P}(M \downarrow)^! (X := -\ln p, \overline{X} := -\ln(1-p)) \\ & = & \inf_{n \in \mathbb{N}} \{-\ln p - n \ln(1-p)\} = -\ln p \\ & = & -\ln \left(\sup_{\omega : M \to \mathbf{t}} \omega\right) \end{array}$$

Theorem

For all terms $M : \operatorname{Bool}^n \to \operatorname{unit}$ there exists an all-one formal polynomial $p \in \mathbb{T}\{\mathbb{X}\}$ such that

$$\mathbf{t}^! \llbracket M \rrbracket = p^!$$

The tropical degree \mathfrak{d}_M of M is the minimum degree of such polynomials p.

Theorem

For all terms $M : \operatorname{Bool}^n \to \operatorname{unit}$ there exists an all-one formal **polynomial** $p \in \mathbb{T}\{\mathbb{X}\}$ such that

$$\mathbf{t}^! \llbracket M \rrbracket = p^!$$

The tropical degree \mathfrak{d}_M of M is the minimum degree of such polynomials p.

Theorem

Finding the tropical degree \mathfrak{d}_M for a term M: Bool is Π_1^0 -hard.

Theorem

For all terms $M : \operatorname{Bool}^n \to \operatorname{unit}$ there exists an all-one formal **polynomial** $p \in \mathbb{T}\{\mathbb{X}\}$ such that

$$\mathbf{t}^! \llbracket M \rrbracket = p^!$$

The tropical degree \mathfrak{d}_M of M is the minimum degree of such polynomials p.

Theorem

Finding the tropical degree \mathfrak{d}_M for a term M: Bool is Π^0_1 -hard.

Reduction from "knowing if a generic term N : unit is normalisable" to "computation of a generic \mathfrak{d}_M ".

Theorem

For all terms $M : \operatorname{Bool}^n \to \operatorname{unit}$ there exists an all-one formal **polynomial** $p \in \mathbb{T}\{\mathbb{X}\}$ such that

$$\mathbf{t}^! \llbracket M \rrbracket = p^!$$

The tropical degree \mathfrak{d}_M of M is the minimum degree of such polynomials p.

Theorem

Finding the tropical degree \mathfrak{d}_M for a term M: Bool is Π^0_1 -hard.

Reduction from "knowing if a generic term N : unit is normalisable" to "computation of a generic \mathfrak{d}_M ".

Given N, take $X_1 \neq X_2 \notin N$ and

$$M := \star \oplus_{X_1} (N \oplus_{X_2} (\mathbf{fix}.I)).$$

Theorem

For all terms $M : \operatorname{Bool}^n \to \operatorname{unit}$ there exists an all-one formal **polynomial** $p \in \mathbb{T}\{\mathbb{X}\}$ such that

$$\mathbf{t}^! \llbracket M \rrbracket = p^!$$

The tropical degree \mathfrak{d}_M of M is the minimum degree of such polynomials p.

Theorem

Finding the tropical degree \mathfrak{d}_M for a term M: Bool is Π_1^0 -hard.

Reduction from "knowing if a generic term N : unit is normalisable" to "computation of a generic \mathfrak{d}_M ".

Given N, take $X_1 \neq X_2 \notin N$ and

$$M := \star \oplus_{X_1} (N \oplus_{X_2} (\mathbf{fix.}I)).$$

N normalisable $\Rightarrow [M] = X_1 + \overline{X}_1 X_2 \mu + \cdots \Rightarrow \mathfrak{d}_M \geq 2.$

Theorem

For all terms $M : \operatorname{Bool}^n \to \operatorname{unit}$ there exists an all-one formal **polynomial** $p \in \mathbb{T}\{\mathbb{X}\}$ such that

$$\mathbf{t}^! \llbracket M \rrbracket = p^!$$

The tropical degree \mathfrak{d}_M of M is the minimum degree of such polynomials p.

Theorem

Finding the tropical degree \mathfrak{d}_M for a term M: Bool is Π_1^0 -hard.

Reduction from "knowing if a generic term N : unit is normalisable" to "computation of a generic \mathfrak{d}_M ".

Given N, take $X_1 \neq X_2 \notin N$ and

$$M := \star \oplus_{X_1} (N \oplus_{X_2} (\mathbf{fix.} I)).$$

 $N \text{ normalisable } \Rightarrow \llbracket M \rrbracket = X_1 + \overline{X}_1 X_2 \mu + \cdots \Rightarrow \mathfrak{d}_M \geq 2.$

N not normalisable $\Rightarrow [M] = X_1 \Rightarrow \mathfrak{d}_M = 1$.

Theorem

For all terms $M : \operatorname{Bool}^n \to \operatorname{unit}$ there exists an all-one formal **polynomial** $p \in \mathbb{T}\{\mathbb{X}\}$ such that

$$\mathbf{t}^! \llbracket M \rrbracket = p^!$$

The tropical degree \mathfrak{d}_M of M is the minimum degree of such polynomials p.

Theorem

Finding the tropical degree \mathfrak{d}_M for a term M: Bool is Π^0_1 -hard.

Reduction from "knowing if a generic term N : unit is normalisable" to "computation of a generic \mathfrak{d}_M ".

Given N, take $X_1 \neq X_2 \notin N$ and

$$M := \star \oplus_{X_1} (N \oplus_{X_2} (\mathbf{fix.} I)).$$

 $N \text{ normalisable } \Rightarrow \llbracket M \rrbracket = X_1 + \overline{X}_1 X_2 \mu + \cdots \Rightarrow \mathfrak{d}_M \geq 2.$

N not normalisable $\Rightarrow [M] = X_1 \Rightarrow \mathfrak{d}_M = 1$.

So

$$\mathfrak{d}_M = 1 \Leftrightarrow N \text{ not normalisable.}$$

Theorem

Let $k \in \mathbb{N}$ and $\{s_n \mid n \in \mathbb{N}^k\} \subseteq \mathbb{N} \cup \{+\infty\}$. Then there exists a **finite** set $P \subseteq \mathbb{N}^k$ such that, for all $x \in \mathbb{T}^n$,

$$\inf_{n\in\mathbb{N}^k}\{nx+s_n\}=\min_{n\in P}\{nx+s_n\}.$$

Theorem

Let $k \in \mathbb{N}$ and $\{s_n \mid n \in \mathbb{N}^k\} \subseteq \mathbb{N} \cup \{+\infty\}$. Then there exists a **finite** set $P \subseteq \mathbb{N}^k$ such that, for all $x \in \mathbb{T}^n$,

$$\inf_{n\in\mathbb{N}^k}\{nx+s_n\}=\min_{n\in P}\{nx+s_n\}.$$

$$P := \{ n \in \mathbb{N}^k \mid s_n < +\infty \text{ and for all } m \prec n \text{ one has } s_m > s_n \}.$$

Let $k \in \mathbb{N}$ and $\{s_n \mid n \in \mathbb{N}^k\} \subseteq \mathbb{N} \cup \{+\infty\}$. Then there exists a **finite** set $P \subseteq \mathbb{N}^k$ such that, for all $x \in \mathbb{T}^n$,

$$\inf_{n\in\mathbb{N}^k}\{nx+s_n\}=\min_{n\in P}\{nx+s_n\}.$$

$$P := \{ n \in \mathbb{N}^k \mid s_n < +\infty \text{ and for all } m \prec n \text{ one has } s_m > s_n \}.$$

$$P \text{ infinite } \Rightarrow \exists m_0 \prec m_1 \prec \cdots \subseteq P \Rightarrow \exists s_{m_0} > s_{m_1} > \cdots \subseteq \mathbb{N}. \text{ So } P \text{ finite.}$$

▼ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ○

Let $k \in \mathbb{N}$ and $\{s_n \mid n \in \mathbb{N}^k\} \subseteq \mathbb{N} \cup \{+\infty\}$. Then there exists a **finite** set $P \subseteq \mathbb{N}^k$ such that, for all $x \in \mathbb{T}^n$,

$$\inf_{n\in\mathbb{N}^k}\{nx+s_n\}=\min_{n\in P}\{nx+s_n\}.$$

$$P := \{ n \in \mathbb{N}^k \mid s_n < +\infty \text{ and for all } m \prec n \text{ one has } s_m > s_n \}.$$

 $P \ infinite \Rightarrow \exists m_0 \prec m_1 \prec \cdots \subseteq P \Rightarrow \exists s_{m_0} > s_{m_1} > \cdots \subseteq \mathbb{N}$. So $P \ finite$. Wlog $P \neq \emptyset$.

Let $k \in \mathbb{N}$ and $\{s_n \mid n \in \mathbb{N}^k\} \subseteq \mathbb{N} \cup \{+\infty\}$. Then there exists a **finite** set $P \subseteq \mathbb{N}^k$ such that, for all $x \in \mathbb{T}^n$,

$$\inf_{n\in\mathbb{N}^k}\{nx+s_n\}=\min_{n\in P}\{nx+s_n\}.$$

$$P := \{ n \in \mathbb{N}^k \mid s_n < +\infty \text{ and for all } m \prec n \text{ one has } s_m > s_n \}.$$

$$s_m + mx \le s_n + nx.$$

Let $k \in \mathbb{N}$ and $\{s_n \mid n \in \mathbb{N}^k\} \subseteq \mathbb{N} \cup \{+\infty\}$. Then there exists a **finite** set $P \subseteq \mathbb{N}^k$ such that, for all $x \in \mathbb{T}^n$,

$$\inf_{n\in\mathbb{N}^k}\{nx+s_n\}=\min_{n\in P}\{nx+s_n\}.$$

$$P := \{ n \in \mathbb{N}^k \mid s_n < +\infty \text{ and for all } m \prec n \text{ one has } s_m > s_n \}.$$

 $P \ infinite \Rightarrow \exists m_0 \prec m_1 \prec \cdots \subseteq P \Rightarrow \exists s_{m_0} > s_{m_1} > \cdots \subseteq \mathbb{N}$. So $P \ finite$. Wlog $P \neq \emptyset$. Now by induction on \prec , show that $\forall n \in \mathbb{N}^k$, $\exists m \in P \ such that$

$$s_m + mx \le s_n + nx.$$

• n = 0: Wlog $n \notin P$. So $s_n = +\infty$. So any $m \in P \neq \emptyset$ works.

Let $k \in \mathbb{N}$ and $\{s_n \mid n \in \mathbb{N}^k\} \subseteq \mathbb{N} \cup \{+\infty\}$. Then there exists a **finite** set $P \subseteq \mathbb{N}^k$ such that, for all $x \in \mathbb{T}^n$,

$$\inf_{n\in\mathbb{N}^k}\{nx+s_n\}=\min_{n\in P}\{nx+s_n\}.$$

 $P := \{ n \in \mathbb{N}^k \mid s_n < +\infty \text{ and for all } m \prec n \text{ one has } s_m > s_n \}.$

$$s_m + mx \le s_n + nx.$$

- n = 0: Wlog $n \notin P$. So $s_n = +\infty$. So any $m \in P \neq \emptyset$ works.
- $n \neq 0$: Wlog $n \notin P$. So two cases: either $s_n = +\infty$, done as before.

Let $k \in \mathbb{N}$ and $\{s_n \mid n \in \mathbb{N}^k\} \subseteq \mathbb{N} \cup \{+\infty\}$. Then there exists a **finite** set $P \subseteq \mathbb{N}^k$ such that, for all $x \in \mathbb{T}^n$,

$$\inf_{n\in\mathbb{N}^k}\{nx+s_n\}=\min_{n\in P}\{nx+s_n\}.$$

 $P := \{ n \in \mathbb{N}^k \mid s_n < +\infty \text{ and for all } m \prec n \text{ one has } s_m > s_n \}.$

$$s_m + mx \le s_n + nx.$$

- n = 0: Wlog $n \notin P$. So $s_n = +\infty$. So any $m \in P \neq \emptyset$ works.
- $n \neq 0$: Wlog $n \notin P$. So two cases: either $s_n = +\infty$, done as before. Or there is $n' \prec n$ such that $s_{n'} \leq s_n$.

Let $k \in \mathbb{N}$ and $\{s_n \mid n \in \mathbb{N}^k\} \subseteq \mathbb{N} \cup \{+\infty\}$. Then there exists a **finite** set $P \subseteq \mathbb{N}^k$ such that, for all $x \in \mathbb{T}^n$,

$$\inf_{n\in\mathbb{N}^k}\{nx+s_n\}=\min_{n\in P}\{nx+s_n\}.$$

$$P := \{ n \in \mathbb{N}^k \mid s_n < +\infty \text{ and for all } m \prec n \text{ one has } s_m > s_n \}.$$

$$s_m + mx \le s_n + nx.$$

- n = 0: Wlog $n \notin P$. So $s_n = +\infty$. So any $m \in P \neq \emptyset$ works.
- $n \neq 0$: Wlog $n \notin P$. So two cases: either $s_n = +\infty$, done as before. Or there is $n' \prec n$ such that $s_{n'} \leq s_n$. So:

$$s_{n'} + n'x \le s_n + n'x < s_n + (n - n')x + n'x = s_n + nx.$$

Let $k \in \mathbb{N}$ and $\{s_n \mid n \in \mathbb{N}^k\} \subseteq \mathbb{N} \cup \{+\infty\}$. Then there exists a **finite** set $P \subseteq \mathbb{N}^k$ such that, for all $x \in \mathbb{T}^n$,

$$\inf_{n\in\mathbb{N}^k}\{nx+s_n\}=\min_{n\in P}\{nx+s_n\}.$$

$$P := \{ n \in \mathbb{N}^k \mid s_n < +\infty \text{ and for all } m \prec n \text{ one has } s_m > s_n \}.$$

 $P \text{ infinite } \Rightarrow \exists m_0 \prec m_1 \prec \cdots \subseteq P \Rightarrow \exists s_{m_0} > s_{m_1} > \cdots \subseteq \mathbb{N}. \text{ So } P \text{ finite.}$ Wlog $P \neq \emptyset$. Now by induction on \prec , show that $\forall n \in \mathbb{N}^k, \exists m \in P \text{ such that}$

$$s_m + mx \le s_n + nx.$$

- n = 0: Wlog $n \notin P$. So $s_n = +\infty$. So any $m \in P \neq \emptyset$ works.
- $n \neq 0$: Wlog $n \notin P$. So two cases: either $s_n = +\infty$, done as before. Or there is $n' \prec n$ such that $s_{n'} \leq s_n$. So:

$$s_{n'} + n'x \le s_n + n'x < s_n + (n - n')x + n'x = s_n + nx.$$

Wlog $n' \notin P$.

Let $k \in \mathbb{N}$ and $\{s_n \mid n \in \mathbb{N}^k\} \subseteq \mathbb{N} \cup \{+\infty\}$. Then there exists a **finite** set $P \subseteq \mathbb{N}^k$ such that, for all $x \in \mathbb{T}^n$,

$$\inf_{n\in\mathbb{N}^k}\{nx+s_n\}=\min_{n\in P}\{nx+s_n\}.$$

$$P := \{ n \in \mathbb{N}^k \mid s_n < +\infty \text{ and for all } m \prec n \text{ one has } s_m > s_n \}.$$

P infinite $\Rightarrow \exists m_0 \prec m_1 \prec \cdots \subseteq P \Rightarrow \exists s_{m_0} > s_{m_1} > \cdots \subseteq \mathbb{N}$. So P finite. Wlog $P \neq \emptyset$. Now by induction on \prec , show that $\forall n \in \mathbb{N}^k$, $\exists m \in P$ such that

$$s_m + mx \le s_n + nx.$$

- n = 0: Wlog $n \notin P$. So $s_n = +\infty$. So any $m \in P \neq \emptyset$ works.
- $n \neq 0$: Wlog $n \notin P$. So two cases: either $s_n = +\infty$, done as before. Or there is $n' \prec n$ such that $s_{n'} \leq s_n$. So:

$$s_{n'} + n'x \le s_n + n'x < s_n + (n - n')x + n'x = s_n + nx.$$

Wlog $n' \notin P$. IH $\Rightarrow \exists m \in P$ such that $s_m + mx \leq s_{n'} + n'x$.

Let $k \in \mathbb{N}$ and $\{s_n \mid n \in \mathbb{N}^k\} \subseteq \mathbb{N} \cup \{+\infty\}$. Then there exists a **finite** set $P \subseteq \mathbb{N}^k$ such that, for all $x \in \mathbb{T}^n$,

$$\inf_{n\in\mathbb{N}^k}\{nx+s_n\}=\min_{n\in P}\{nx+s_n\}.$$

$$P := \{ n \in \mathbb{N}^k \mid s_n < +\infty \text{ and for all } m \prec n \text{ one has } s_m > s_n \}.$$

 $P \ infinite \Rightarrow \exists m_0 \prec m_1 \prec \cdots \subseteq P \Rightarrow \exists s_{m_0} > s_{m_1} > \cdots \subseteq \mathbb{N}$. So $P \ finite$. Wlog $P \neq \emptyset$. Now by induction on \prec , show that $\forall n \in \mathbb{N}^k$, $\exists m \in P \ such that$

$$s_m + mx \le s_n + nx$$
.

- n = 0: Wlog $n \notin P$. So $s_n = +\infty$. So any $m \in P \neq \emptyset$ works.
- $n \neq 0$: Wlog $n \notin P$. So two cases: either $s_n = +\infty$, done as before. Or there is $n' \prec n$ such that $s_{n'} \leq s_n$. So:

$$s_{n'} + n'x \le s_n + n'x < s_n + (n - n')x + n'x = s_n + nx.$$

Wlog $n' \notin P$. IH $\Rightarrow \exists m \in P$ such that $s_m + mx \leq s_{n'} + n'x$. So m works.

Differential privacy in less than a nutshell

Fix a set \mathcal{X} of records and let $\mathbf{db} := !\mathcal{X}$ the set of databases.

Endow **db** with the ℓ_1 -metric: $||x - x'||_1 := \sum_{i \in \mathcal{X}} |x_i - x_i'|$.

Differential privacy in less than a nutshell

Fix a set \mathcal{X} of records and let $\mathbf{db} := !\mathcal{X}$ the set of databases. Endow \mathbf{db} with the ℓ_1 -metric: $||x - x'||_1 := \sum_{i \in \mathcal{X}} |x_i - x'_i|$.

Fix $\mathcal{D}(Y) \subseteq [0,1]^Y$ the set of probability mass functions.

Definition

A function $f: \mathbf{db} \to \mathcal{D}(Y)$ is ϵ -**DP** when $f(x)_y \le e^{\epsilon \cdot ||x-x'||_1} \cdot f(x')_y$.

Fix a set \mathcal{X} of records and let $\mathbf{db} := !\mathcal{X}$ the set of databases.

Endow **db** with the ℓ_1 -metric: $||x - x'||_1 := \sum_{i \in \mathcal{X}} |x_i - x_i'|$.

Fix $\mathcal{D}(Y) \subseteq [0,1]^Y$ the set of probability mass functions.

Definition

A function $f: \mathbf{db} \to \mathcal{D}(Y)$ is ϵ -**DP** when $f(x)_y \le e^{\epsilon \cdot ||x-x'||_1} \cdot f(x')_y$.

Endow $\mathcal{D}(Y)$ with the **privacy loss** metric:

$$d_{\mathrm{PL}}(\mu, \nu) = \sup_{y \in Y} \left| \ln \left(\frac{\mu_y}{\nu_y} \right) \right| = \sup_{y \in Y} \left| -\ln \mu_y + \ln \nu_y \right|.$$

Remark

 $f: \mathbf{db} \to \mathcal{D}(Y)$ is $\epsilon\text{-}DP \iff f$ is $\epsilon\text{-}Lipschitz$ wrt ℓ_1 and d_{PL} .

Differential privacy in less than a nutshell

Fix a set \mathcal{X} of records and let $\mathbf{db} := !\mathcal{X}$ the set of databases. Endow \mathbf{db} with the ℓ_1 -metric: $||x - x'||_1 := \sum_{i \in \mathcal{X}} |x_i - x'_i|$.

Fix $\mathcal{D}(Y) \subseteq [0,1]^Y$ the set of probability mass functions.

Definition

A function $f: \mathbf{db} \to \mathcal{D}(Y)$ is ϵ -**DP** when $f(x)_y \le e^{\epsilon \cdot ||x-x'||_1} \cdot f(x')_y$.

Endow $\mathcal{D}(Y)$ with the **privacy loss** metric:

$$d_{\mathrm{PL}}(\mu, \nu) = \sup_{y \in Y} \left| \ln \left(\frac{\mu_y}{\nu_y} \right) \right| = \sup_{y \in Y} \left| -\ln \mu_y + \ln \nu_y \right|.$$

Remark

 $f: \mathbf{db} \to \mathcal{D}(Y)$ is $\epsilon\text{-DP} \iff f$ is $\epsilon\text{-Lipschitz}$ wrt ℓ_1 and d_{PL} .

Ideally

Let $M : Bool^n \to Bool$ and $f : \mathbf{db} \to \mathcal{D}(\{0, 1\})$.

$$f \text{ is } \epsilon\text{-}DP \implies \llbracket f; M \rrbracket \text{ is } \epsilon(\mathfrak{d}_M + 2)\text{-}DP$$

Geometry

We want: algorithm to estimate \mathfrak{d}_M

How we want it: Compositional

How we want it: Compositional

 \rightarrow Phrase it as a labelled n.-i. intersection type system

How we want it: Compositional

 \rightarrow Phrase it as a labelled n.-i. intersection type system

$$M: \langle \Gamma_i \vdash^{p_i} a_i \rangle_{i \in I}$$

where $a ::= n \in \mathbb{N} \mid [a, \dots, a] \multimap a$ and $p \in \mathbb{T}\{X_1, \dots, X_n\}$

How we want it: Compositional

 \rightarrow Phrase it as a labelled n.-i. intersection type system

$$M: \langle \Gamma_i \vdash^{p_i} a_i \rangle_{i \in I}$$

where $a ::= n \in \mathbb{N} \mid [a, \dots, a] \multimap a$ and $p \in \mathbb{T}\{X_1, \dots, X_n\}$

$$\frac{M:\left\langle \Gamma \vdash^{p} a \right\rangle \qquad N:\left\langle \Delta \vdash^{q} b \right\rangle}{M \oplus_{X} N: \operatorname{merge} \left\langle \left. \Gamma \vdash^{X \cdot p} a \,,\, \Delta \vdash^{\overline{X} \cdot q} b \right. \right\rangle}$$

How we want it: Compositional

→ Phrase it as a labelled n.-i. intersection type system

$$M: \langle \Gamma_i \vdash^{p_i} a_i \rangle_{i \in I}$$

where $a ::= n \in \mathbb{N} \mid [a, \dots, a] \multimap a$ and $p \in \mathbb{T}\{X_1, \dots, X_n\}$

$$\frac{M:\left\langle \,\Gamma \vdash^{p} a \,\right\rangle}{M \oplus_{X} \,N:\, \mathrm{merge} \left\langle \,\,\Gamma \vdash^{X \cdot p} a \,,\, \Delta \vdash^{\overline{X} \cdot q} b \,\,\right\rangle}$$

Theorem

 $Let \vdash M : Bool. Then$

$$M: \langle \Gamma \vdash^p n \rangle \implies \mathbf{t}! \llbracket M \rrbracket \leq p!$$

and there is one with $\mathbf{t}^! \llbracket M \rrbracket = p^!$ and $\deg p = \mathfrak{d}_M$.

Geometry

Problem: need to compute the tropical product $\Pi_i p_i$ and minimise it

Solution: Polytopes!

Solution: Polytopes!

Tropical polynomial function \Leftrightarrow Newton Polytope \Leftrightarrow Tropical variety

Newton(pq) = Newton(p) + Newton(q)

Solution: Polytopes!

Tropical polynomial function \Leftrightarrow Newton Polytope \Leftrightarrow Tropical variety Newton(pq) = Newton(p) + Newton(q)

Figure 2.19: A tropical planar line

Solution: Polytopes!

Tropical polynomial function \Leftrightarrow Newton Polytope \Leftrightarrow Tropical variety Newton(pq) = Newton(p) + Newton(q)

Figure 2.25: Smooth (non-degenerated) conics

Solution: Polytopes!

Tropical polynomial function \Leftrightarrow Newton Polytope \Leftrightarrow Tropical variety Newton(pq) = Newton(p) + Newton(q)

Figure 2.32: The Itenberg-Ragsdale curve of degree 10

Geometry

Problem: Newton(p) is for $p \in [-\infty, +\infty)\{X\}$. We work on $\mathbb{T} = [0, +\infty]$

Solution: Restrict Newton(p) to a sub-Polytope which is "minimal"

Geometry

Problem: Newton(p) is for $p \in [-\infty, +\infty)\{X\}$. We work on $\mathbb{T} = [0, +\infty]$

Solution: Restrict Newton(p) to a sub-Polytope which is "minimal"

At a certain point we need an *obvious* property of the "visibility relation" of a facet from a point...

Problem: Newton(p) is for $p \in [-\infty, +\infty)\{X\}$. We work on $\mathbb{T} = [0, +\infty]$

Solution: Restrict Newton(p) to a sub-Polytope which is "minimal"

At a certain point we need an *obvious* property of the "visibility relation" of a facet from a point...

Problem: Newton(p) is for $p \in [-\infty, +\infty)\{X\}$. We work on $\mathbb{T} = [0, +\infty]$

Solution: Restrict Newton(p) to a sub-Polytope which is "minimal"

At a certain point we need an *obvious* property of the "visibility relation" of a facet from a point...

Merci & Grazie!

