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Prog. Lang. — QRel,
Type —  formal variables set
Program  +——

formal power series
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Prog. Lang. — QRel
Type — formal variables set
A TA] = {:Ea | a € [[A]]}
Program —
Z:AFM:B

formal power series

[Z: A+ M : B] € Qfxpa 317!
Say the language is probabilistic. Then for Q) = RJ;SO we have

[ M : Bool]; = P(M —» i)
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Tropical mathematics in less than a nutshell

T:= semiring [0, +oc] with

add := inf, zero := 400,
multiply := +, one : =0

> anz™ €10,1]
neN

{z} — iréfN{nx —Ina,} € T{z}
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Tropical mathematics in less than a nutshell
T:= semiring [0, +oc] with
add := inf, zero := 400,

multiply := 4+, one :=0
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Tropical mathematics in less than a nutshell

T:= semiring [0, +oc] with 7
add := inf, zero := 400,
multiply := 4+, one :=0

> anz™ € [0,1]{z} — mf {naz —Inan} € T{z} s

o1 (z) =min{z + 3,1}

0.4

(
(
@o(z) =min{2z + 1,2+ 1,1}
@3(z) =min{3z+ §,2z + ;,x + 3,1}
(

pi(z) =min{dz + &3z + L,20+ Lz + 1,1}

() =.infn {nz+ 5}




Tropical mathematics in less than a nutshell

Intractable problems (e.g. root finding, optimization)
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Tropical mathematics in less than a nutshell

Intractable problems (e.g. root finding, optimization)

tropicalization:
+ +— min
X =+
Combinatorial (and sometimes tractable!) ones
e tropical roots are found in linear time
e likelihood estimation in statistical models

e machine learning (ReLU networks)
e optimal routing paths

PAN G4
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M = (True Dx False) Dx ((True Dx False) Dx (False S x True))



M = (True Dx False) Dx ((True Dx False) Dx (False S x True))

Py =X?
Py = X?X
P’M‘r = 73



M :

(True Dx False) Dx ((True Dx False) S x (False S x True))

Py =X?
Py =X*X

P’M‘r = 73

What is the most likely path M — True ?



M = (True Dx False) Dx ((True Dx False) Dx (False S x True))

il ril rrr | r rir rrl
X2 XX | X | xxX | xxX° | XX~
R || True | False
i 1 0
f |1 0
0 rrr 1 0
lr 0 1
rlr 0 1
rrl 0 1

Hidden Markov Model

Maximum A Posteriori Estimation:
For fixed X, X, given the
observation “M — True”,

which is its most likely explanation?



M = (True Dx False) Dx ((True Dx False) Dx (False S x True))

il ril rrr | r rir rrl
—3 — —3 —

X2 | XX | X | XX | XX | XX
R || True | False

Hidden Markov Model

Il 1 0
]f rll 1 0 Maximum A_Postoriori Estimation:
0O T 1 0 For fixed X, X, given the
lr 0 1 observation “M — True”,
rir 0 1 which is its most likely explanation?
rrl 0 1

—» find a reduction wy maximizing P(R = wg | O = True):

P(R = wo) = max{X2, X?X, X }

[m] = =
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M = (True Dx False) Dx ((True Dx False) Dx (False S x True))

il ril rrr | r rir rrl
X2 XX | X | xxX | xxX° | XX~
ﬁ Trlue Faése Hidden Markov Model
? ril 1 0 Maximum likelihood estimation:
0 rrr 1 0 Given the observation “M — True”,
lr 0 1 which value of X, X makes the
rir 0 1 explanation 7l as likely as possible?
rrl 0 1
R XX
rgmax ————————
% P(M — True)

u]
)
I
i
!
)
)
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M = ﬁX()\.’IJ *@XZL‘) — % Dx M
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M = fix.(Azx. x ®xx) — xSx M
M —x %
M — M —x .

M g M g M =y %

XX

o>
11/21



M = ﬁX()\LTJ *EBX.’E) — % Dx M

2 3
— —2 —=3

XX | XX | XX

> | o

Hidden Markov Model

Maximum A Posteriori Estimation:
given the observation “M terminates”,
which is its most likely explanation?

O+

R
0
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M = ﬁX()\LTJ *EBX.’E) — % Dx M

2 3
— —2 —=3

XX | XX | XX

> | o

Hidden Markov Model

Maximum A Posteriori Estimation:
given the observation “M terminates”,
which is its most likely explanation?

O+

R
0
1
2
3

== =

argmax X X'
K2



F = Afy.ifte(Oy, %, f(Ny))

M; == (fix.F)(NiD) — ifte(O(N'D), x, My.1)
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F := \fy.ifte(Oy, x, f(Ny))
M; := (fix.F)(N'D) — ifte(O(N'D), %, M;1)

P(R=1) — P(OD=0) '
P(R=i+1) = P(O(N'D)=0)[[,_gP(O(NID) # 0)

Hidden Markov Model

Maximum A Posteriori Estimation:
given the observation “M terminates”,
which is its most likely explanation?

S+

Wl —|ol by
= =]




F := \fy.ifte(Oy, x, f(Ny))
M; := (fix.F)(N'D) — ifte(O(N'D), %, M;1)

P(R=1) — P(OD=0) '
P(R=i+1) = P(O(N'D)=0)[[,_gP(O(NID) # 0)

Hidden Markov Model

Maximum A Posteriori Estimation:
given the observation “M terminates”,
which is its most likely explanation?

S+

Wl —|ol by
= =]

argmax P(R = 1)

i>1
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M = fix.(Az. x ®xx) > &x M

M —x *

X
M 5 M= *
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M = fix.(Az. x ®xx) > &x M

M —x *

X
M~ M —x .
M g M g M oy

XX

P(M ) =

ZneN xx"



M = fix.(Az. x ®xx) > &x M

M —x *

M 5 M= *

X
M -
e xXx’
P(M{)=3, XX
tP(M ) =

inf,en{X + nY}



M = fix.(\x. xDxx) » xDx M

Mﬁx* p

M < M —x * Pq

M - M -5 M —x * pg>
PM)(X =p,X:=q:=1—-p) = Y nenPd” = 1%(1 =1

tP(M ]) = infen{X +nX}.



M = fix.(\x. xDxx) » xDx M

Mﬂx*

MﬂxMﬂx*

X
r+y
M—o>x M —>x M —x * T+ 2y
P(MY) (X :=p,X:=q=1-p) =3, yp¢" =% =1
tP(M )X =2, X

Da
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M = fix.(\x. xDxx) » xDx M

A[ —» X x

MﬂxMﬂx*

x
r+y
M —»x M —x M —x % T+ 2y
P(Mi)'(X :p,X: - _p):ZneNpqn_l__q:]-
tP(M ) (X =2, X



M = fix.(\x. xDxx) » xDx M

Mﬁx*
M—» Mﬂx*
M - M -5 M —x *

pq
pq

[M]'(p,1 —p) =P(M (X :=p, X :==1-p) =, =1

tP(M )X =2,X =)

—-q

= inf,en{z + ny} = z.



M = fix.(\x. xDxx) » xDx M

M —x * P
M —5 M —x * Pq
M - M -5 M —x * pg>

[M]'(p,1 —p) =P(M (X :=p, X :==1-p) =, =1

t'[M](—Inp, — In(1 — p)) tP(M ) (X := —Inp, X := —In(1 — p))
infpen{—Inp—nln(l —p)} = —Ilnp

—ln< sup w)

w:M —»x



Tropical semantics makes the (infinite) search space finite!!

M —x * P
M —5 M —x * Pq
M - M -5 M —x * pg>

[M]'(p,1 —p) =P(M (X :=p, X :==1-p) =, =1

E[M)(—np,—~In(1—p) = tB(MY(X = —lnp, X = —In(1 - p))
= infpen{—Inp—nln(l-p)} =—Inp
= —1 S
o)
O «Fr «Er 2> E o



Theorem

For all terms M : Bool™ — unit there exists an all-one formal polynomial
p € T{X} such that

t'[M] = p'

The tropical degree )y of M is the minimum degree of such polynomials p.




Theorem

For all terms M : Bool™ — unit there exists an all-one formal polynomial
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The tropical degree )y of M is the minimum degree of such polynomials p.

Theorem

Finding the tropical degree 0p; for a term M : Bool is 119-hard.
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Theorem

For all terms M : Bool™ — unit there exists an all-one formal polynomial
p € T{X} such that
t'[M] = p'

The tropical degree )y of M is the minimum degree of such polynomials p.

Theorem

Finding the tropical degree 0p; for a term M : Bool is 119-hard.

Reduction from “knowing if a generic term N : unit is normalisable” to
“computation of a generic 0,
Given N, take X; # Xo ¢ N and

M = * Dx, (N Dx, (ﬁX.I))

N normalisable = [M] = X; + X Xop + -+ = 0y > 2.
N not normalisable = [M] =X; =0y =1
So

0y = 1< N not normalisable.
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Theorem
P C NF such that, for all z € T",

Let k € N and {s, | n € N*} C NU {+oo}. Then there exists a finite set

f _ .
n1é1Nk{nx + sn} gg}r;{nx + Sn}
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Theorem
P C NF such that, for all z € T",

Let k € N and {s, | n € N*} C NU {+oo}. Then there exists a finite set
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Fix a set X of records and let db :=!X" the set of databases.
Endow db with the ¢1-metric: ||z — /||y := >,y lzs — 27|
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Fix a set X of records and let db :=!X the set of databases.
Endow db with the ¢1-metric: ||z — /||y := >,y lzs — 27|
Fix D(Y) C [0,1]¥ the set of probability mass functions.

Definition
A function f : db — D(Y) is e-DP when f(z), < e“lz=2"lv. f(z7),. J
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Fix D(Y) C [0,1]¥ the set of probability mass functions.

Definition
A function f : db — D(Y) is e-DP when f(z), < e“lz=2"lv. f(z7),. J

Endow D(Y') with the privacy loss metric:

dp1. (1, V) = sup
yey

In <&>' =sup |—Inp, +1ny,|.
Yy yey

Remark
f:db — D(Y) is e-DP < [ is e-Lipschitz wrt 1 and dpr. J
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Fix a set X of records and let db :=!X the set of databases.

Endow db with the ¢1-metric: ||z — /||y := >,y lzs — 27|

Fix D(Y) C [0,1]¥ the set of probability mass functions.

Definition J

A function f : db — D(Y) is e<DP when f(z), < ele==l . f(z),.

Endow D(Y') with the privacy loss metric:

In <&>' =sup |—Inp, +1ny,|.

dp1, (1, V) = sup » p
Y ye

yey

Remark
f:db — D(Y) is e-DP < [ is e-Lipschitz wrt 1 and dpr.

Ideally
Let M : Bool™ — Bool and f : db — D({0,1}).
fise-DP = [f;M] is e(dp + 2)-DP

= g - - = et
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LL
Programs —————

Differential /Metric
formal

~+analysis

tropical
power series

maths

+geometry

Statistical Inference
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We want: algorithm to estimate 0,

How we want it: Compositional
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We want: algorithm to estimate 0,
How we want it: Compositional
—» Phrase it as a labelled n.-i. intersection type system

M(Fll_p'” ai)
where a :=n €N [a,...,a] —aand p € T{Xq,...,X,}

i€l

M :(TFPa) N:(AFID)
M®x N : merge<F|—X'p a, AFXa b>

Theorem
Let = M : Bool. Then

M:(THPn) = t'[M]<p

and there is one with t'[M] = p' and degp = 0p;.
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Problem: need to compute the tropical product II;p; and minimise it

Solution: Polytopes!
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Problem: need to compute the tropical product II;p; and minimise it
Solution: Polytopes!

Tropical polynomial function < Newton Polytope < Tropical variety

Newton(pq) = Newton(p) + Newton(q)

f,y)=y

flx,y)=x
flx,y)=0

Figure 2.19: A tropical planar line
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Problem: need to compute the tropical product II;p; and minimise it
Solution: Polytopes!

Tropical polynomial function < Newton Polytope < Tropical variety

Newton(pq) = Newton(p) + Newton(q)
Figure 2.25: Smooth (non-degenerated) conics

[m]

=
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Problem: need to compute the tropical product II;p; and minimise it
Solution: Polytopes!

Tropical polynomial function < Newton Polytope < Tropical variety

Newton(pq) = Newton(p) + Newton(q)

Figure 2.32: The Itenberg-Ragsdale curve of degree 10
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Problem: Newton(p) is for

We
work on T = [0, +00]

Solution: Restrict Newton(p) to a
sub-Polytope which is “minimal”
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Problem: Newton(p) is for

We
work on T = [0, +00]

Solution: Restrict Newton(p) to a
sub-Polytope which is “minimal”

At a certain point we need an

obvious property of the “visibility
relation” of a facet from a point...

Merci & Grazie!

A
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